
109109109109109

Fu
ll

pa
pe

r i
n

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

, N
ew

 Z
ea

la
nd

, J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz

ABSTRACT
This paper evaluates object-oriented design

features used in an application that converts
course descriptors from text to xml. The
discussion of design features of the application
is presented as an example of the sort of teaching
activity needed to bridge the gap between initial
exposure to object oriented programming in a
specialized environment and the final journeyman
learning experience achieved by a capstone
project.

1. INTRODUCTION
I am always surprised when I hear a

programmer say that they don’t value object
technology. I wonder what I’m not “getting”
because I find objects a wonderful programming
tool. What they have not “got” that they end up
wondering what all the fuss is about, rather than
saying “wonderful”? I am however one of life’s
hopelessly eager and non-sceptical adopters of
new trends: an avid seeker of ‘new fields and
fresh horizons’. In contrast are undoubtedly those
who have sufficient experience that they see
nothing new under the sun and are deeply
suspicious of any hyped “silver bullet” like object
technology. (Page-Jones, 1998a) However object
technology is no longer a new thing but has had
time (from the early 1970s) to become a mature
technology. Part of the bad press that object
technology gets is due to the difficulty of

illustrating its benefits to students learning a first
programming language. An object-oriented hello world
is a very poor teaching example that lacks simplicity
and clarity (Westfall, 2001). Educators are in general
agreement (Crawford 2002) that ooHelloWorld is not a
Good Thing that is “self-evidently wonderful to anyone
in a position to notice.”(Raymond 1996) In contrast to
a simplistic example, this paper discusses the design
and implementation of a “righteous solution” (DeGrace
& Stahl 1990) to the “wicked” problem of converting
legacy system semi-structured documents into XML.
Be on the look out for the reasons why a design feature
is seen as a Good Thing.

2. THE APPLICATION
The purpose of my application was to convert course

descriptors into XML. Course descriptors at CPIT are
created in MS-Word and are maintained in a directory
as authoritative master documents that are used as
the basis for creating ((via cut-and-paste) programme
handbooks, course descriptors and outlines, web pages
and assorted other advertising materials. There are
significant problems with the version control of all these
derived documents. There is a need for a system that
automatically regenerates all the published documents
without relying on manual processes. It would also be
valuable to be able to detect which documents need to
be republished once a master document is altered. A
technical solution which can achieve this is to convert
the course descriptors to XML and to use XSLT to
extract the published information in multiple formats.

An Example of Teaching
Journeyman Level Programming:

XML Conversion of Course
Descriptors

Dr Mike Lance
School of Computing

Christchurch Polytechnic Institute of Technology
Christchurch, NZ

lancem@cpit.ac.nz

110110110110110

An initial attempt at converting from MS-Word into
XML by use of a “Save as” option was not a viable
solution because the assorted authors of the initial
documents had used many different word processing
style techniques to achieve a desired format. Also the
documents are heavily formatted and one of the goals
of a data-centric use of XML is to separate semantic
content from display information. Converting a
document to XML markup involves extract the
meaningful data from amid the formatting information
and making sure the extracted information conforms
to a standard constraining description. (The ‘XML-
speak’ for this is “validation against a document type
definition”).

The second attempt at conversion to XML began
by saving the course descriptors in text format to get
rid of most of the distracting visual formatting
information such as changes of font. (See figure 1)
Even with most formatting information removed the
conversion process was still not simple. Presentation
information such as white space, leading stars and
numbers still needs to be discarded. Although the
sequence of information remains the same regardless

of the course or programme and although each area
has an almost standard heading, some course
descriptors have more information than others and
some even introduce new “fields”. Word-processed
documents are essentially ‘free form’ and can be
endlessly modified without any constraints. The
number of the different document formats meant there
was a need to detect subtle changes and consequently
adjust the rules that search for and extract subsets of
information. The need for flexibility makes conversion
of course descriptors to XML a Wicked (DeGrace &
Stahl) programming task. There were too many
documents to make it worthwhile to ‘tweak’ format
variations by hand. Besides, creating the application
had just got interesting!

Figure1. This shows the alluringly semi-structured nature of a course
descriptor. Note that the header of the Aim section has ended up

appended to the end of the prior line. Parsing data with these slight
irregularities makes this a wicked problem

111111111111111

2.1 A Decoupled Architecture
Allows Component
Substitution

There were three stages to processing a course
descriptor: accessing and reading in the original
document, processing the document to extract the
semantic information and outputting the final structured
XML document. Accordingly three base classes were
created and allocated methods so that between them
they defined how the system worked. (See figure 2)
The main ImportController class has the responsibility
for setting up the object structures of the programme,
loading a document and feeding it to AbstractProcessor
sub-classes, one line at a time. AbstractProcessor
subclasses process each line, identifying and
extracting relevant information and then pass it on to
AbstractBuilder subclasses to construct the output
document. The other main responsibility of the
ImportController was to create specialist
AbstractProcessors and Abstract Builder subclasses,
link them together, and coordinate their operation. The
code to set all these structures (see figure 3) is both
simple and powerful. Changing the single word denoting
which subclass to create after ‘as’ in the create lines
of this setup method results in a different object
containing a different type of implementation being
‘plugged in’. Abstract classes have been used to define
the interfaces how processing code or building code

can be called without specifying implementation
details. I did this because I knew I wanted to try
different ways of extracting information and building
the final document. I wanted to flexibility in how I
actually coded these processing and building
algorithms (Auer 1995, Woolf 2000)

The link between an AbstractProcessor subclass
and the ImportController is stored in a reference
variable called myCurrentProcessor and each
AbstractProcessor subclass has a back-link
(inverse reference) named myController. Each
AbstractProcessor subclass has a link to an
AbstractBuilder subclass named myBuilder. The
setup code creates objects and establishes an
appropriate object reference by the calls to the
setNextStrategy and setBuilder defined in the
AbstractProcessor class.

The whole system then works with an
implementation mechanism in which “an object
forwards or delegates a request to another object.
The delegate carries out the request on behalf of
the original object” (Gamma et al, p360). This can
be seen in the import method (figure 5) which is the
main loop driving the application. The code reads a
line from a file and then if it is not blank passes it to
myCurrentProcessor to parse. Exactly which object
gets the data to parse is determined at runtime. It
can be any AbstractProcessor subclass as they all
implement the parse method. This indirect

Figure 2. The architecture of the importer application revolves around a
controller and two base classes. Many subclasses of AbstractProcessor

and AbstractBuilder exist but are not shown here.

112112112112112

referencing and delegation is the feature of object
technology that allows components to be substituted
for one another.

2.2 A Builder as a Design Class
“Separate the construction of a complex object from

its representation so that the same construction
process can create different representations.” (Gamma
et al, p97)

The usefulness of delegation can be seen most
easily in how a number of different AbstractBuilder
subclasses are used. (See figure 5) The base class
has a method for adding each type of data being
extracted from a course descriptor. Each
AbstractProcessor class ends its processing by

Figure 3. The ImportController creates and links the
objects that contain the logic of the application.

passing data to myBuilder to deal with. The
AbstractBuilder methods are all abstract and do
nothing more than promise those subclasses will have
to deal with the data. In debugging the application it
was useful to firstly create a WritingBuilder class which
merely reported the data being fed to it. If all was
working well then the course descriptors was
reproduced verbatim. A more sophisticated testing
version removed the need for visual inspection of data
and knew what data to expect and reported exceptions
accordingly. A single line of change in a new
ImportController would result in data being saved to a
Jade database or to an XML data structure. The ability
to redirect output and to debug the application without
having to deal with the complexity of how to implement
the XML processing of the output is a Good Thing.

113113113113113

Figure 5. A useful debugging capability is provider by implementing
methods in the WritingBuilder subclass.

Figure 4. The main functionality of the ImportController is to read
a file and have delegated processors parse each line.

114114114114114

2.3 The Simplest Thing That
Almost Worked

All the decomposing of the system architecture
into easily exchanged classes and providing a central
control point to flexibly glue the parts of the system
together is nice. The AbstractBuilder obviously
provides access to a useful debugging technique.
However these convenient features do not address the
actual problem of extracting information from
surrounding presentation details. My first approach to
this problem was to try a simple solution. (Wells 1999,
Jeffries 2003) This solution involved searching for a
pattern that identifies a field of information and then
extracting the target text from the line containing the
pattern match. (See figure 6.) There are some things

to be proud of in this first attempt. The implementation
is in Jade and just by using Jade I have been forced to
use a strict object based approach: the extract method
is contained within a CourseProcessor class. The use
of constants at the top of the method provides an easy-
to-find place at which to designate the indicator text
that determines if a line contains target information.
There is of course nothing of object technology involved
in the use of constants. Being able to easily find where
to make changes is a Good Thing that can be achieved
by careful naming and modularization. (Rising 1997)
The art here is probably more in the careful naming of
things than in any special use of object technology.

There is some encapsulation or information hiding
in the code which reduces its apparent complexity to
the reader. The .has method is one I defined for all

Figure 6. An example of a simple approach to extracting
information that ultimately proved to be a too simplistic and

inflexible a programming approach.

115115115115115

string primitive types: it returns a Boolean value
indicating if a substring of the line is equal to a given
value. It is good that I can hide away in this method
the exact details of substring slicing and indexing
because the resulting code is easier to read. The
payoff from using an object approach is that all strings
contain this method and there is no need for the code
to contain extensive data type checking. The method
only exists in String objects and thus is guaranteed
to be operating on the right type of data. In a similar
manner, the .calcData method hides the details of
how the target information is extracted from the line,
given knowledge of the indicator text. The algorithm
here involved removing the indicator text and all white
space and punctuation from the line: what remains is
hopefully the target text. This is an example of classic
functional decomposition and owes nothing to object
technology. It does achieve the same useful hiding of
complex implementation details.

In trying to continue with the approach taken in
CourseProcessor::extract it rapidly became apparent
that the code is a very ‘fragile’. Extension of the

functionality of the method can only be made by editing
and expanding the original code. The method requires
continual addition of elseif clauses as its functionality
is extended to deal with new cases. The simple logic
of ‘if has then calcData’ can rapidly become a
complicated series of additional ‘or’and ‘and’ conditions.

2.4 A Template Method extends
functional decomposition

“Define the skeleton of an algorithm in an
operation, deferring some steps to client
subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without
changing the algorithm’s structure.” (Gamma et
al, p325)

The simplest thing THAT WORKED in extracting
the desired data was much more complicated that the
simplest thing I tried to make work. The
AbstractProcessor base class defines its controlling
logic in as two template methods (see figure 7)called
parse and changeprocessor. The exact details of how

Figure 7. Functional decomposition is enhanced by sub-classing using
the Template Method Pattern.

116116116116116

the extract and isMine methods work was left for
AbstractProcessor subclasses to define.

For example, an AimProcessor subclass has to
extract aims in lines which begin with stars followed
by spaces. All the rest of the text on the line is the
course aim. The Aims section ends when the words
“Learning Outcomes” are detected. The short
cooperating methods are a feature of object-oriented
programming. They all have a set and focused
responsibility. Often they are coordinated by higher
level template methods or a controller. This approach
is an example of the Open-Closed Principle (Martin
1969) whereby a programme is open for extension in
sub-classes classes, but closed to editing of code in
the abstract base classes. For example, if, in a
differently formatted course descriptor, aims were
numbered with single digits rather than stars, then
this change is deal with by sub-classing the
AimProcessor and only changing the code in the new
subclass’s extract method. Every new type of course
descriptor being processed needs a distinct controller
which attaches the appropriate class of processor, but
only within the ImportController does any cut and paste
extension of code occur. The beauty of this approach
is that it maximises reuse of code while avoiding
unintended maintenance effects. The loose coupling
of the sequence of Processors means that this
swapping of processing strategy can also happen at
run-time

2.4 Strategy Pattern
“Define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy
lets the algorithm vary independently from the
clients that use it” (Gamma et al., p315)

The strategy pattern was used in setting up the
AbstractProcessor subclasses. Each
AbstractProcessor subclass was passed a line and
was responsible for determining if the line held data
appropriate to that processor. (See figure 7) If relevant
features were detected in the data then desired
information was extracted. If the processor could not
deal with the data then the ImportController was alerted
that the next processor in line was to be tried. The
data was passed to the next processor. This effectively
allows the processing strategy to be changed
dynamically at run time. This chaining of processing
strategies avoids the inflexible and fragile hard coding
of a logical succession of processing options as was
seen in the extract method of the CourseProcessor.
Because the successor strategy is stored as a
reference, there is the added flexibility of being able to
change the sequence of processing strategies

dynamically at runtime. This is avoided by the set up
code in the ImportController which makes an initial
choice of what processing strategy will follow which.

3. CONCLUSION
Introductory teaching of object technology is a

problem because “object technology did not improve
the ability to design data structures or algorithms, but
rather the ability to build complex systems.” (Goldberg,
2002, p11) Object technology was developed as an
attempt to deal with issues of modularity, reuse and
robustness of design under change pressure. These
are not the typical concerns of a beginning programmer
and the overhead imposed by object technology
distracts from the lessons a beginning programmer
needs to learn. (Westfall 2001, Crawford 2002). One
solution to the overhead required by objects is to
develop a custom programming environment for
teaching object-orientation based on a careful analysis
of the learning needs of beginning programmers. (eg
Goldberg et al 1997, Howell 2003, Kolling & Rosenberg
2002) These frameworks, micro-worlds and custom
Integrated Development Environments reduce the
amount of scaffolding code a beginning programmer
needs to write to productively use object technology.
There is a recognised progression in the way people
absorb sophisticated new techniques and then apply
them. (Page-Jones 1998b) The use of a specialist
programming environment is widely reported as being
successful at moving a student’s level of software
engineering expertise from “Innocent” through
“Exposed” to “Apprentice”. However the next step in
expertise is to the level of “Practitioner” and is best
achieved with the rite of passage of a significant project.
Acknowledgement of the importance of this part of
the learning experience is shown in the widely adopted
capstone project in NACCQ qualifications.

I am concerned that there is not enough emphasis
on the length of time a student spends at the
“Apprentice” level and not enough emphasis on the
sort of skills an Apprentice needs to learn. Skills such
as refactoring and use of design patterns are easily
left to be tacitly learned by the student programmer.
As a tertiary teacher and programmer I have somehow
moved myself beyond Practitioner to become first a
self-sufficient “Journeyman”, then a “Master” who
knows when to break the rules and now a “Researcher”
looking for flaws in contemporary techniques and
consequent ways to improve the techniques. How can
I teach my students some of the hard lessons I have
learned on this journey so as to shorten their learning
pathway? I use a walk-though of a software design,
as was presented in this article, to promote the ‘use
of advanced programming techniques’. I also put strong

117117117117117

emphasis on the development of a cynical or critical
appreciation by the student of when object technology
is an inappropriate overkill. (Dodani 1999, Kerievsky
2002). Was the design of my application really a Good
Thing?

REFERENCES
Auer, K. (1995) “Reusability Through Self-

Encapsulation” in Coplien, J.O. & Schmidt,
D.C. (Eds) Pattern Languages of Program
Design,. Addison-Wesley (Software Patterns
Series). pp505-520.

Crawford, D. (ed) (2002) “Forum:`Hello, World’ Gets
Mixed Greetings” Communications of the ACM,
45(2):11-17

Dahl, O & Nygaard, K (1966) “SIMULA: an ALGOL-
based simulation language”. Communications
of the ACM, 9(9)671-678.

DeGrace, P. & Stahl, H. (1990) “Wicked Problems,
Righteous Solutions: A Catalog of Modern
Software Engineering Paradigms”, Prentice-
Hall/YOURDON Press.

Dodani, M. (1999) “Rules Are for Fools, Patterns Are
for Cool Fools”, Journal of Object Oriented
Programming, 6(12):21-23.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J.
(1995) “Design Patterns: Elements of reusable
object-oriented Software”. Reading: Addison-
Wesley Publishing Company.

Goldberg, A., Abell, S.T. & Leibs, D (1997) “The
LearningWorks Development and Delivery
Frameworks”. Communications of the ACM
October 1997, 40 (10):78-81.

Goldberg, A. (2002) “Learning is a Community
Experience”, Journal of Object Technology,
1(2):7-20.

Greenberg, A. C. & Black, A.P. (2001) “Squeak
Smalltalk: Language Reference”, Accessed
March 14, 2003. <http://www.mucow.com/
squeak-qref.html>

Howell, S. PyKarel <http://pykarel.sourceforge.net/>
, Accessed March 14, 2003.

Jeffries, R. (2003) “Do The Simplest Thing That Could
Possibly Work”. Accessed March 14, 2003.

< c 2 . c o m / c g i / w i k i ? D o T h e S i m p l e s t
ThingThatCouldPossiblyWork>

Kerievsky, J. (2002) “Stop Over Engineering” Software
Development, April 2002

Kölling, M. and Rosenberg, J., (2002) “BlueJ - The
Hitch-Hikers Guide to Object Orientation”, The
Maersk Mc-Kinney Moller Institute for
Production Technology, University of Southern
Denmark, Technical Report 2002, No 2.

Larman, C. (2001) “Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design and the Unified Process (2nd Edition)”.
New Jersey: Prentice Hall.

Martin, R.C. (1996) “The Open Closed Principle.”
Accessed March 14, 2003 <http://
www.objectmentor.com/resources/articles/
ocp.pdf>

Meyers, B. (1997) “Object-Oriented Software
Construction, Second Edition”. New Jersey:
Prentice Hall.

Page-Jones, M. (1998a) “Object Orientation: The
Importance of Being Earnest”. Accessed March
14, 2003. <http://www.waysys.com/
ws_content_al_ibe.html>

Page-Jones, M. (1998b) “The Seven Stages of
Expertise in Software Engineering”. Accessed
March 14, 2003. <http://www.waysys.com/
ws_content_al_sse.html>

Raymond, E. (1996) “The New Hacker’s Dictionary -
3rd Edition”. MIT Press.

Rising, L. (1997) “The Road, Christopher Alexander,
and Good Software Design”, Object Magazine,
7(1):46-50.

Wells, D. (1999) “Simplicity is the Key”. Accessed
March 14, 2003.
<www.extremeprogramming.org/rules/
simple.html>

Westfall, R. (2001) “Technical opinion: Hello, world
considered harmful” Communications of the
ACM, 44(10):129-130.

Woolf, B. (2000) “The Abstract Class Pattern” in
Harrison, N., Foote, B. & Rohnert, H. (Eds)
Pattern Languages of Program Design 4,
Addison-Wesley (Software Patterns Series):5-
14.

118118118118118

