
189
189189189189189189

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

 N
ew

 Z
ea

la
nd

 J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz

ABSTRACT
E-commerce takes place in a fast changing

and competitive environment. It is important to
produce high quality e-commerce systems to
meet the needs of e-commerce users. Developers
and customers need guidance on what
development processes are available and what
areas of the whole development process are
covered in the different processes, in order to
make choices. This paper compares the Rational
Unified Process, Open Source Development
Process and Agile Modeling in order to give some
direction in making a choice between competing
e-processes.

1. INTRODUCTION
Software development and specifically e-

commerce development can be complex or easy.
More than half of all software development takes
place without a defined methodology being used,
which is usually not a problem with a small e-
commerce site. Not using a methodology with
complex sites can lead to high failure rates
(Astels et al. 2002; Kaschek et al. 2003).

E-development requires different approaches
in its development. Some of the differences are
that an e-commerce site will be published on
the Internet and that profiling the user is more
difficult in e-commerce systems because it is
challenging to uniquely identify the client (Schewe
et al. 2002; Kaschek et al. 2003).

E-development focuses on two parts; the front-end,
being the interface used to communicate with the user
over the Internet, and the back-end, which provides the
capabilities necessary to capture and process
customers’ orders, control inventory, and process
product distribution.

The e-processes being investigated in this paper
are: The Rational Unified Process (RUP), Open Source
Software Development (OSP) and Agile Modeling with
Extreme programming (AM/XP). RUP was chosen
because many tertiary institutions use Rational Rose
as a case tool for development. Some authors believe
that RUP is over developed and has become too large
for ease of use. (Schewe 2000; Hesse 2002) Agile
was developed as a possible solution to RUP’s problems
and is therefore also included. The NZ public sector
has just followed international trends by encouraging
open source use, thus OSP is the third e-process
included.

The fast changing e-commerce environment,
combined with the nature of the development processes,
demand that an informed choice be made on which
process to use for development. A large number of
development processes exist and for the new developer
it is difficult to make an informed decision on which
one to use. This paper compares some processes to
assist with the identification of the best-suited e-process
to a specific scenario.

COMPARING POSSIBLE E-
PROCESSES

Frina Albertyn

Eastern Institute of Technology
Napier, NZ

falbertyn@eit.ac.nz

190190190190190

2. THE E-PROCESSES

2.1 The Rational Unified Process
RUP is a popular development process, uses

software engineering processes, has a well-defined
structure and uses an object-orientated approach. RUP
provides a whole development environment using UML
(Unified Modeling Language) as its basis.

The horizontal dimension of RUP represents the
dynamic aspect of the process in terms of time,
cycles, phases, iterations and milestones (Larman
2002; Medvidovic et al. 2002). A software product is
developed using a number of incremental iterations of
the phases of development. The vertical dimension
represents the static aspect of the process in terms
of activities, disciplines, artifacts and roles (Bloomberg
2000; Graham 2001; Kruchten 2001). RUP involves
five different views of the system’s architecture; namely,
Use-case view, Logical view, Implementation view,
Process view and Deployment view (Reed 2002).

The four phases of RUP are:
Inception: Envision the project scope, vision and

business case. Determine whether the stakeholders
agree on the vision of the project and determine whether
the project is feasible.

Elaboration: Develop a domain model, design
model, software architecture document, data model,
test model, implementation model, use-case
storyboards and user interface prototypes, system
sequence diagrams and events names.

Construction: Elaboration ends when the high risk
factors have been resolved. The design aspects have
been solved. Build the product and start developing
user guides and online help.

Transition: Deploy the system operationally.
Develop user guides and training materials. Data must
be converted for use in the life system. Market and
implement the system.

2.2 The Open Source Software
Development Process

OSS development is based on the idea of using
software released under a license as defined by the
Open Source Initiative. The Open Source Initiative (OSI)
is a non-profit corporation that manages and promotes
the software. This software is free, re-distributable and
with unlimited users and usage. The source code is
available and can be modified to suit the requirements
of the development process. (Feller and Fitzgerald
2000; OSI 2003).

In an OSS development approach, programmers
and developer have the freedom to innovate and modify
the code as required. Developers are potentially a large
number of volunteers. The programmer has the ability
to freely distribute modifications to software to others.
A good developer knows what codes need to be newly
created and what codes can be re-used. It is important
that the developer responds to user requests
quickly(Mockus et al. 2002).

Steps in the process include defining roles and
responsibilities, identifying work to be done, assigning
and performing development work, prerelease testing,
and inspecting and managing releases (Mockus et al.
2002). Open source software development is an idea,
which has reached maturity and is being used by the
commercial world more and more (OSI 2003).

2.3 Agile Process
Agile modelling (AM) is a practice-based

methodology for modelling and documenting software-
based systems. The Agile Alliance promotes
interaction and individuals over tools and processes,
working software over extensive documentation,
customer collaboration over contract negotiation and
responds to change over sticking to the plan. AM
focuses on a portion of the whole development process
and needs to be used with Extreme Programming (XP).
The idea is to start with XP and incorporate AM into it
(AM 2001; Beck Kent 2001; Ambler 2002).

The values of AM are communication, courage,
feedback, humility and simplicity. The principles of AM
include model with a purpose, assume simplicity,
embrace change, incremental change, multiple
models, quality work, rapid feedback, software
production is the goal, know your tools and models
and maximise stakeholder investment. Some of the
best practices for AM are stakeholder need to actively
take part, collective ownership, create number of
models in parallel, apply the right artefacts, depict
models simply, iterative processes, prove with code
and apply standards (Ambler 2002). The core practices
of AM are: Continuous, active stakeholder
participation; Apply the relevant models and artefacts
to the correct application; Everybody owns the whole
project and are allowed to work on any of the parts;
Promote quality assurance and develop tests before
developing the software; Develop several models
parallel; Keep requirements, models etc. as simple
as possible; Place developed models on a wall where
they will be visible to the whole development team;
Change focus to another part of the project if you get
stuck on anything; Model small portions at a time;
Communicate your ideas to others and get their input;
Prove ideas with code; Use basic tools such as a

191191191191191

whiteboard and basic drawing tools and apply
standards.

Business people and software developers often see
the traditional software development methods as too
slow.(Astels et al. 2002) Extreme modeling combines
the advantages of methodologies based on the Unified
Modeling Language with the advantages of Extreme
Programming (XP). The best practices of UML are
combined with the flexibility of developing and testing
XP code. The philosophy of XP is to invest just enough
effort to understand what is intended and then build it
to see whether the design is right.(Ambler 2000; Boger
2002; Astels et al. 2002)

The Agile phases are:
Conceptualize the system: Create a vision of the

system, Write user stories, Develop the acceptance
tests, Find a solution and check the solution.

Plan the new system: Estimations, Plan releases,
Develop an iteration schedule, Tactical planning.

Develop the system: Develop a system of pair
programming, continuous testing, Design using the
Agile values, principles and practices, Develop the code
and refractor; Integrate daily.

Deliver the system.
Developers are often responsible for a company’s

decision to adopt AM(XP) as a development
environment. It is important to convince managers that
this development process has merit and depth.

3 COMPARISON OF RUP, OSS
AND AM(XP).

The three development processes are compared
according to their process characteristics, people
involved and the development process.

3.1 Process characteristics
Table 1 addresses the basic characteristics of the

three e-processes.

3.2 People characteristics
Table 2 addresses the people involved with the

development process.
3.3 Development characteristics
Table 3 addresses the characteristics of the

different e-processes.
(Hogarth; Perens 1999; Bloomberg 2000; Feller

and Fitzgerald 2000; AM 2001; Kruchten 2001; Mockus
et al. 2002; Astels et al. 2002; Larman 2002; Reed
2002; RUP 2002)

4. CONCLUSION
Future research should incorporate other

development processes into comparisons. These
should include Story Boarding and User Profiling.
(Schewe et al. 2002/2003; Kaschek et al. 2003)
Communicating with the customer should also have
priority when a new e-commerce site is being
developed. Communication and collaboration are the

Characteristic RUP OSS AM(XP)
Project Scope

Large projects. Many
developers all with access
to a central repository.

Large Projects. Many
developers. Can
accommodate a large
user base.

Suited for small projects.
Divide larger projects into
smaller scaled ones for
AM(XP)

Type of systems All types. Infra-structural, multi-
user.

Small systems or subdivided
smaller systems.

Principles
involved

Develop iteratively,
manage the
requirements, use
component-based
architecture, visually
model the software, verify
software quality and
control changes to
software.

Freedom to innovate
and modify.
Ability to distribute
modifications to
software to others free.
Know what to create
and what to re-use.
Rapid responses to
user requests.

Work with the customers; Use
metaphors to describe difficult
processes; Plan; Short
meetings; Test first; Keep it
simple; Develop programs in
pairs; Code to standards;
Collective software ownership;
Continuous Integration;
Release early and often; Work
short hours; Open to change.

Few possible
reference site/s

www.therationaledge.com
www.rational.com

www.opensource.org

www.agilealliance.org
www.agilemodeling.com
www.extrememodeling.org

Table 1: Process Characteristics

192192192192192

critical success factors when building a new web site.
(Wallace and Matthews 2002; Schewe et al. 2002/
2003) All three development processes investigated,
especially OSS and AM(XP), involve the customer on
a high level.

The main implication from the investigation is that
e-processes, though evolving, have not been sufficiently
adjusted to accommodate all the challenges that e-
commerce development holds. Choosing the right
development process for specific situations is not an
easy task and more research should be done to
ascertain ways of identifying the development process
best suited to a specific scenario.

REFERENCES
AM (2001). The Agile Modelling site

www.agilemodeling.com.
Ambler, S. W. (2000). “Extreme modeling - Design is

fundamental to the XP process, regardless of
what the name may imply.”
www.sdmagazine.com/documents/s-738/
sdm0011m/0011m.htm.

Ambler, S. W. (2002). Agile Modeling (AM) An overview,
Ronin International. 2003 www.ronin-intl.com.

Audris Mockus, Roy T Fielding, et al. (2002). “Two
case studies of open source development:
Apache and Mozilla.” ACM Transactions on
Software Engineering and Methodology
(TOSEM) 11(3): 309-346 doi.acm.org/10.1145/
567793.567795.

Beck Kent, e. a. (2001). Manifesto for Agile Software
Development. 2003 www.agilealliance.org.

Bloomberg, J. (2000). “Building E-businesses with the
Rational Unified Process.” www.rhodes.com/
articles/ebiz.html.

Boger, M. b. M. (2002). Welcome to
xTremeModeling.org, XM - Extreme Modeling.
2002 www.extrememodeling.org.

David Astels, Granvilee Miller, et al. (2002) A practical
guide to eXtreme programming. Upper Saddle
River, Prentice Hall 0-13-067482-6.

Graham, T. (2001). Introducing the Rational Unified
Process, IEEE Computer Society. 2002
www.computer.org/software/bookshelf/2001/
5501bks_2.htm.

Hesse, W. (2002). “DinoSaur Meets Archeaeopteryx?
Seven Thesis on Rational’s Unified Process
(RUP).”

Hogarth, M. A framework for Open Development of
Terminologies mycin.ucdvis.edu/presentations/
opendevterminilogies.ppt.

Joseph Feller and B. Fitzgerald (2000). A framework
analysis of the open source software
development paradigm. Proceedings of the 21st
Annual International Conference on Information
Systems (ICIS 2000), Brisbane, Australia 58-
69.

Kaschek, R., K.-D. Schewe, et al. (2003). “Story
Boarding for Web-based Information Systems.”
Submitted to Journal

Kruchten, P. (2001). What is the Rational Unified
Process?, The Rational Edge. 2002
www.therationaledge.com/content/jan_01/
f_rup_pk.html.

Larman, C. (2002) Applying UML and Patterns. Upper
Saddle River, Prentice Hall PTR 0-13-095004-
1.

Medvidovic, N., D. S. Rosenblum, et al. (2002).
Modeling software architectures in the Unified
Modeling Language. ACM Transactions on
Software Engineering and Methodology
(TOSEM), ACM Press 2-57.

OSI (2003). Open Source Initiave, OSI News. 2003
www.opensource.org.

Characteristic RUP OSS AM(XP)

Roles and
responsibilities
of developers

Large development teams
possible with all having
access to the repository.

Potentially a large
number of volunteer
developers.

Pair development. Roles:
Coach; Tracker; Facilitator and
Architect.

Roles and
responsibilities
of users
(customer)

End-users see the
developed parts quickly
and the users are
engaged to provide
feedback for adaptation,
so that the end product
can meet the needs of the
stakeholders.

Users play a large role
as testers, documenters
as well as defining new
requirements promptly

The customer decides scope,
priority and release content.
The customers form an integral
part of the development
process. The roles identified
are storytellers, acceptors,
resource providers, planners
and advocate.

Table 2: Developers

193193193193193

Charact-
eristic

RUP OSS AM(XP)

Development
work

Detailed development
phases have to be laid
down. Iterative lifecycle and
risk-driven development.

No explicit system-
level design or
detailed design. No
project plan, schedule
or list of the
deliverables.

Not a complete process but
focuses on effective modeling of
requirements and documentation
and should be combined with a
process such as XP.

Phases
identified

Inception, Elaboration,
Construction and Transition.

Define roles and
responsibilities;
Identify work to be
done; Assign and
perform the
development work;
Prerelease testing;
Inspections;
Managing releases;

Conceptualize the system.
Plan the new system.
Develop the system.
Deliver the system.

Testing Testing is organized around
single components first and
then gradually gets
expanded to include larger
sets of integrated
components. Product and
process quality must be
monitored continuously.

Continuous testing Tests are developed before
coding. Everything that can
possibly be tested should be
tested. Test before and after
refractoring as well as when a
new task is implemented.
Acceptance testing, Performance
testing and Quality testing should
all form part of the deployment
plan.

Managing
implementatio
n and
releases

Delivery of small releases,
but transition phase consists
of beta tests and then full
deployment.

New parts of the
project are released
frequently.

Delivery of small releases to
customers.

Modeling or
artifacts used

Business Modeling:
Domain Model, Partial
artefacts in each iteration
Requirements:
Requirements, Constraints,
Use-case models, Vision
Statement, Supplementary
Specifications and Glossary
Design: Design model and
Software architecture.
Project Management Plan.
Test: Test plan (acceptance
tests from requirements –
use cases)
Environment:
Development case

Process model needs
to be developed.

Uses case models, class models,
data models and user interface
models. Develop different models
in parallel.

Development
tools or Case
Tools
available

Full software support for the
whole development process.

Browsers, editors,
query servers,
authoring servers and
distribution servers
required. Developers
Email list.
3GLs. Application
area more complex.

Enhances other software
processes, but does not have its
own Case Tools.

UML
modeling

The whole development
environment using UML as a
basis.

 UML provides a number of
diagrams. XP has found 3 of
these diagrams useful to help
find solutions to problems namely
the class, sequence and state
diagrams.

Table 3: Development process

194194194194194

Perens, B. (1999). Open Sources: Voices from the
Open Source Revolution, O’Reilly online
catalog. 2003 www.oreilly.com/catalog/
opensources/book/perens.html.

Reed, P. R. J. (2002) Developing Applications with Java
and UML. Indianapolis, Addison-Wesley 0-201-
70252-5.

RUP (2002). Rational Rose:Product Information,
Rational the software development company.
2002 www.rational.com/products/rose/
prodinfo.jsp.

Schewe, K. D. (2000). UML: A modern dinosaur? A
critical analysis of the Unified Modelling
Language. 10th European-Japanese Conf. on
Information Modelling and Knowledge Bases.,
Saariselka/Finland

Schewe, K.-D., R. Kaschek, et al. (2002). Modelling
Web-Based Banking Systems: Story Boarding
and User Profiling. ER2002: Conceptual
Modeling Approaches for e-Business: A Web
Service Perspective (eComo 2002), Tampere
Finland, ER2002 p. 63 - 74.

Schewe, K.-D., R. Kaschek, et al. (2002/2003).
Emphasizing the Communication Aspects for
the Successful Development of Electronic
Business Systems. Emphasizing the
Communication Aspects for the Successful
Development of Electronic Business Systems

Wallace, C. and C. Matthews (2002). Communication:
key to success on the Web. ER2002:
Conceptual Modeling Approaches for e-
Business: A Web Service Perspective (eComo
2002), Tampere, Finland p. 75 - 85.

