
423
423423423423423423

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

 N
ew

 Z
ea

la
nd

 J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz

to describe patterns and frameworks and the
weaknesses of UML in this regard are explained.
The temporal relationship of object-oriented
languages, UML, and design patterns is
described.

Keywords
UML, design patterns, OMG meta-model,

UML weaknesses, application frameworks.

1. INTRODUCTION
Currently the Unified Modeling Language

(UML) is taught in higher education institutes
across New Zealand and internationally and it is
supported by all major CASE tools. It is
considered to be a universal modelling language
(Engels, Heckel and Sauer, 2000). This article
investigates how the UML meets the demands
of object-oriented software design and some of
its limitations, especially when used to describe
design patterns. Section 2 covers the history of
UML and in section 3 the impact of the OMG
meta-model is described. Section 4 covers the
major strengths and weaknesses of UML.
Section 5 introduces design patterns and their
relationship to frameworks and section 6
describes the relationship between UML and
design patterns. A timeline describing the major
events in both areas is provided to show their
evolution.

2. HISTORY OF UML
UML is an amalgamation of the individual work

of three methodologists; Rumbaugh, Jacobson
and Booch (1999). They developed modelling
languages appropriate for the object-oriented
languages that were becoming increasingly
important to the software development

community in the early 1990s. In 1997 the Object
Management Group (OMG) adopted the Unified
Modeling Language (UML) as a standard modelling
language (Kobryn, 1999). OMG is made up of about
800 international organisations and individuals involved
in software development (OMG, 2001). In the same year
the International Standards Organisation (ISO) formally
recognised UML version 1.1 as an international standard
for information technology and an international team of
vendors and system integrators have made controlled
refinements from that time (Kobryn, 1999). The OMG
has recently accepted version 2.0 of the UML (not
published at the time of submission of this article).

3. UML AND THE META-MODEL
The present OMG standard is based on a common

UML meta-model. The meta-model is an abstract class
diagram and a set of semantic and syntactic rules that
defines the core elements and relationships used in
UML. All other terms are derived from this core set.
The existence of a meta-model for UML means that it
is more systematically and internally consistent than
any earlier software modelling technology. It also means
that tool vendors and modellers know exactly how to,
for example, transform an element in a class diagram
into its equivalent element in a sequence diagram or a
statechart.

The meta-model allows for additions to the UML
kernel language with a concept called extensions.
Extensions are graphical additions to the existing
symbol set. The extensions are stereotypes, tags or
constraints. An extension mechanism is used to
describe some particular domain or incorporate a
specialist notation system. These new notations can
then be incorporated into UML diagrams and used by
UML tools. Extensions (especially stereotypes) allow

Using the UML to Describe
Design Patterns

Diane Strode
School of Computing

Whitireia Community Polytechnic
Porirua, NZ

d.strode@whitireia.ac.nz

ABSTRACT
This report investigates the Unified Modeling Language (UML), its status as an international

standard in computing practice and its strengths and weaknesses. How the language is used

424424424424424

for modifications to the standard UML from slight
changes to a complete redefinition of the base
language (Berner, Glinz and Joos, 1999) and enable
UML to describe any problem domain (Engels, Heckel
and Sauer, 2000).

OCL (Object Constraint Language) is also part of
the UML and provides a formal rule-based notation
that can be used in ‘design by contract’ object system
development.

OMG has also provided for the automatic generation
of Interface Definition Language (IDL) and Extensible
Mark-up Language (XML) from UML diagrams. This is
possible because UML has a meta-model consistent
with that of other OMG standards. This makes UML
considerably more useful to organisations that want
to model their business using UML, then generate IDL
interfaces from UML, and also generate XML for data
interchange across distributed systems. Use of UML
at this level is named Architecture Driven development
and is especially important to e-business development.

UML is presently undergoing a refinement so that
it will meet the MOF (OMG Meta Object Facility)
meta-model standards. Then it can be used in
conjunction with the international CORBA standard,
enhancing both standards and enabling interoperability
across distributed platforms. This refinement will also
allow for the extension of UML into the domain of
business modelling and provide a framework for
corporate applications (Harmon, 2001).

The goal of this type of standardisation is to allow
systems developed on different platforms using
different software and database systems to interact
transparently with one another (Harmon, 2001).

4. STRENGTHS AND
WEAKNESSES OF UML

UML provides the modeller with the tools to design
a system. UML is used to “visualise, specify, construct
and document the artefacts of a software system”
(Booch et al., 1999, p. 3). UML models provide: a
method of communication between development-
teams, project documentation and a contract between
developers and customers. Standardised UML provides
a common interpretation of the language (Engels,
Hausmann, Heckel and Sauer, 2000) and controlled
changes to the standard UML specification make it
possible for vendors to update their products (e.g.
CASE tools) to meet the specifications of particular
versions.

Reasons for the success of UML include (Kobryn,
1999):

♦ Timing and positioning - in the 1990s a
standardised methodology for designing object-oriented
software systems was needed.

♦ Proven concepts - were available from the
software development field to base a modelling
language upon.

♦ Rigorous UML development process - a team
of committed and knowledgeable people were
available to develop the process in a controlled and
systematic way.

♦ Robust architecture - from its inception the UML
was designed to be scalable and flexible.

Kobryn also believes that UML is able to precisely
specify platform infrastructures and business
component frameworks something that was difficult
to do in the pre-UML modelling era.

However standard UML is known to have significant
problems in its extension mechanisms as they are
not fully described or consistently named and
organised. Kobryn (1999) notes that examples and
guidelines for using extension mechanisms are not
available for advanced applications of the language.
Bennett, McRobb and Farmer (1999) note that there
are incomplete semantics and notation for activity
graph and both Kobryn (1999) and Harmon (2001)
report that because UML is a general modelling
language, its size and expressive power overwhelm
some developers. Kobryn called this problem semantic
bloat (too many different symbols and symbols with
loosely defined meanings).

Another weakness is the statechart which
describes the behaviour of an object over time. Each
state that an object can enter (dynamic behaviour) is
defined in a statechart, however the dynamic
interaction of the modelled object with its associated
objects is not part of a statechart and it is not shown
in any of the other UML diagrams. Researchers have
tackled this problem in various ways using techniques
such as graph transformation of collaboration diagrams
(Engels and Heckel, 2000) and Fontoura and Lucena
(2001) use extension mechanisms to depict object
interactions and recommend the use of roles to clarify
object interactions. Engels, Groenewegen and Kappel
(2000) discuss the problems of modelling the
coordinated collaboration of objects. They argue that
to model realistic situations, “much more detailed and
fine-grained modelling expressivity is needed” (p. 309).
These situations occur where a mixture of both
synchronous and asynchronous message passing is
occurring and needs to be described with an
appropriate model.

425425425425425

The implementation diagrams (component and
deployment diagrams) are two UML models reported
by Engels et al. (2000) as needing enhancement.
Yacoub and Ammar (2000) developed the ‘pattern
diagram’ to compensate for the problems they
encountered in modelling this high-level aspect of their
system. Glinz (2000) specifies nine deficiencies of UML
version 1.3 especially in the area of requirements
modelling and reiterates others findings regarding the
weakness of the language when used to describe
system and subsystem behaviour.

The UML provides many positive benefits but
problems remain with the inability of the language to
model all situations.

5. DESIGN PATTERNS
Engineers in the physical sciences reuse existing

proven solutions to solve the problems of construction
each time they build. Software engineers believe that
this same technique will improve the success and
quality of software systems and reduce the time and
cost of system development. The pattern movement
describes problems and proven solutions for use in
the development of systems written using the object-
oriented programming languages. Reuse of experience
and design is the goal.

A design pattern is a clearly documented
description of a problem that recurs in software
development, and it’s solution. Developers can reuse
a pattern at different times and the final product, or
instantiation of the pattern, is different each time it is

used. The ‘Gang of Four’ (GOF) described the idea of
patterns to the wider software development community
(Gamma, Helm, Johnson and Vlissides, 1995). After
the publishing of this seminal work, PloP (Pattern
Languages of Design) conferences were held to add
to and revise the work on patterns. Following the
conferences books describing these patterns (the
PloPD books) were published.

As shown in figure 1 the development of object-
oriented languages was followed by the beginning of
the patterns movement, which was followed by the
standardisation of UML.

Patterns are used to produce software products. A
major application for design patterns is their use in
application frameworks. Yacoub and Ammar (2000)
describe a framework made up of design patterns. The
design patterns are ‘glued’ together to form a
framework that is then instantiated for use. Fayad
(2000) describes a framework as a re-usable application
skeleton that can be specialised to build a new
application in a specific domain. A white-box framework
is a framework that requires the developer to
understand the structure of the framework and the hot
spots where application-specific functions are added,
whereas a black-box framework provides only
executable code and code extensions are simply
added to create the application. A general approach
to framework construction and instantiation is
described by Braga and Masiero (2001) and a
simplified version is shown in figure 2.

Figure 1: Timeline showing common O-O languages, UML and
patterns movement development.

426426426426426

6. UML FOR PATTERN
DESCRIPTION

A pattern must be described in a rigorous way so
that it can be classified, identified and compared with
other patterns. Most design pattern solutions are
described using a mixture of narrative and UML. There
are different methods for specifying patterns such as
those given by Gamma et al. (1995), and The Hillside
Group (2001). Gamma et al. (1995) recommended that
the pattern solution is described using the Object
Modeling Technique (OMT) developed by Rumbaugh,
Blaha, Premerlani, Eddy and Lorensen (1991) and
interaction diagrams developed by Jacobson,

Christerson, Jonsson and Overgaard (1992) and Booch
(1994). However there is no explicit requirement to
describe design patterns in anything more specific than
narrative, and dynamic behaviour is typically described
with narrative, if it is addressed at all. This could be
because of the recognised weaknesses of the
statechart and activity diagram notation, and the lack
of a diagram that completely specifies dynamic object
interactions.

When version 2.0 of the UML enhances the
implementation diagrams this will enable higher-level
architecture of systems to be modelled more clearly
and will have an impact on the pattern language process
and the development of domain-specific frameworks
from these patterns. As each new version of the UML

Figure 2: The relationship between patterns, pattern
languages, frameworks and applications.

427427427427427

is published by the OMG, patterns can be reworked
using the newer improved notation. The patterns could
then be improved to better describe the dynamic
behaviour of a system, which is an integral part of the
dynamic interplay between the objects of the system.
Strengthening UML in these areas may also provide a
means to describe a new subset of design patterns -
object collaboration-interaction patterns.

7. CONCLUSION
UML is not perfect because it is a universal

modelling language rather than a domain-specific
language. The enhancement of the UML standard to
meet the MOF specification will improve the ability of
designers to design and develop system-wide
architectures incorporating CORBA, XML and other
standards. Improvements to UML specification in the
area of dynamic behaviour will mean the descriptions
of solutions of design patterns can be improved, pattern
languages can be improved, and frameworks will be
easier to design. Some problems with UML will be
resolved in version 2.0, and this may lead to new design
patterns emerging that effectively model object-
collaboration.

REFERENCES
Bennett, S., McRobb, S. & Farmer, R. (1999). Object-

oriented systems analysis and design using
UML. McGraw-Hill: England.

Berner, S., Glinz, M. & Joos, S. (1999). A classification
of stereotypes for object-oriented modeling
languages. Proceedings of the Second
International Conference on the Unified Modeling
Language, p. 249-264. Retrieved 24 October
2001. http://www.ifi.unizh.ch/groups/req/staff/
glinz/activities.html

Booch, G. (1994). Object-Oriented Analysis and
Design with Applications (2nd Ed.). Benjamin/
Cummings: Redwood City, CA.

Braga, R. T. V. & Masiero, P. C. (2001). Position Paper.
1st ASERC Workshop on Software Architecture,
24-25. http://www.icmsc.sc.usp.br/~rtvb/
ingles.html

Engels, G., Hausmann, J. H., Heckel, R. & Sauer, S.
(2000). Dynamic meta modeling: a graphical
approach to the operational semantics of
behavioural diagrams in UML. In Proc. UML
2000,.LNCS 1939, p. 323-337. Evans, A., Kent,
S., & Selic, B. (Eds.). Berlin: Springer-Verlag.
www.upb.de/cs/ag-engels/Papers/2000/
EngelsUMLOO.pdf

Engels, G., Groenewegen, L. & Kappal, G. (2000).
Coordinated collaboration of objects. Advances
in Object-oriented Data Modeling. Papazoglou,
M., Schmidt, J. W. & Mylopoulos, J. (Eds.).
MIT Press: Massachusetts.

Engels, G. & Heckel, R. (2000). Graph transformation
as a conceptual and formal framework for
system modeling and model evolution. Retrieved
24 October 2001, www.uni-paderborn.de/cs/ag-
engels/Papers/2000/EngelslcalpOO.pdf

Engels, G., Heckel, R. & Sauer, S. (2000). UML - a
universal modeling language? ICATPN 2000,
LNCS 1825, pp. 24-38. Springer-Verlag.

Fayad, M. E. (2000). Introduction to the computing
surveys’ electronic symposium on object-
oriented application frameworks. ACM
Computing Surveys, Vol 32, No1 p. 1-9.

Fontoura, M. & Lucena, C. J. P. (2001, March).
Extending UML to improve the representation
of design patterns. Journal of Object-Oriented
Programming, 12 - 19.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J.
(1995). Design Patterns: elements of reusable
object-oriented software. Addison-Wesley:
Massachusetts.

Glinz, M. (2000). Problems and deficiencies of UML
as a requirements specification language.
Proceedings of the 10th International Workshop
on Software Specification and Design, p.11 -
22.

Harmon, P. (2001, April - May). UML models e-
business. Software Magazine. 3-15.

Jacobson, I., Christerson, M., Jonsson, P. &
Overgaard, G. (1992). Object-Oriented Software
Engineering - A Use Case Driven Approach.
Wokingham, Addison-Wesley: England.

Kobryn, C. (1999). UML 2001: a standardization
odyssey. Communications of the ACM, vol. 42,
No. 10.

Object Management Group, retrieved October 2001.
http://www.omg.org

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. &
Lorenson, W. (1991). Object-Oriented Modeling
and Design. Englewood Cliffs, Prentice Hall: NJ.

Rumbaugh, J., Jacobson, I. & Booch, G. (1999). The
unified modeling language reference manual.
Addison-Wesley Longman: Massachusetts.

The Hillside Group. (2001). Patterns and software:
essential concepts and terminology. Retrieved
October 24, 2001, from http://

428428428428428

www.enteract.com/~bradapp/docs/patterns-
intro.html

Yacoub, S. M & Ammar, H. H. (January 2000). Toward
pattern-oriented frameworks. Journal of Object-
oriented Programming, p. 25 - 35.

