
4 94 94 94 94 9

Fu
ll

pa
pe

r i
n

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

, N
ew

 Z
ea

la
nd

, J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz

more and more development teams are adopting
Agile Methods to improve their communication
and productivity. Tasked, by external moderation,
with introducing a group assessment into a 200
level programming paper the researcher chose
an Agile approach. Group projects provide
undergraduate programming students with an
opportunity to learn together through a process
of reflection. As with all group work assessing
individual contribution to a group effort has always
been difficult. One of the key tools of some Agile
methods is Pair Programming, where two
programmers work side-by-side on the same PC
to increase productivity and creativity.
Establishing teams of four and dividing the team
into two sets of ‘pair programmers’ provided an
easier way of being able to assess individual
competency than if trying to assess the group
as a whole. This paper documents the Agile
approaches used in the classroom and
discusses how the students divided up the
workload into iterative development ‘Sprints’ and
adapted to changes introduced by the ‘User’ mid-
project. The students were also given the
opportunity to discuss the experience as a whole
and suggest improvements to the process, these
opinions are also documented.

1. INTRODUCTION
Gone are the days when user requirements are

signed off in full before a software product begins to be
developed. The process of adapting to changing user
requirements began with prototyping, providing a way
to obtain user feedback on the product look and feel or
performance. This feedback would then be acted on
during the next prototyping cycle. Adaptive or ‘Agile’
methods of Software Developments have been evolving
for around a decade but have recently been receiving a
lot of attention, thanks in the main to the high profile of
Extreme Programming (XP) guru Kent Beck. Though
the concepts of agility are nothing new, more and more
development teams are adopting Agile Methods to
improve their communication and productivity.

 Programming Students are encouraged to discuss
problems they encounter with their peers to aid them
in finding solutions, something that they would be
expected to do within their workplace. Actually getting
the students to interact in this way often proves difficult,
they can be reluctant to share solutions that may have
taken a long time to devise. Involving the students in
an Agile Development project required them to work
within a team towards a common goal, sharing their
knowledge and learning from the experience of fellow
students.

Agility in the classroom: Using Agile
Development Methods to foster team

work and adaptability amongst
undergraduate programmers

Sandra Cleland
Information Systems

Faculty of Humanities and Business
Universal College of Learning

Palmerston North, NZ
s.cleland@ucol.ac.nz

ABSTRACT
Agile Development Methods have recently been receiving a lot of attention, thanks in the main to the

high profile of Extreme Programming guru Kent Beck. Though the concepts of agility are nothing new,

5 05 05 05 05 0

2. AGILE METHODS
“While interest in agile methodologies has

blossomed in the past two years, their roots go back
at least a decade. Teams using early versions of Ken
Schwaber’s Scrum, Peter Coad’s Feature-Driven
Development and [Jim Highsmith’s] Adaptive Software
Development were delivering successful projects in the
early to mid-1990’s” (Highsmith, 2002, p.30). There
are a variety of Agile or Lightweight methods in use
but they all follow similar principles. In February 2001
a group of likeminded individuals got together to
discuss and hopefully agree on what these principles
were. The result was the ‘Agile Manifesto’. The Agile
Manifesto States:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes
and tools
Working software over comprehensive
documentation
Customer collaboration over contract
negotiation
Responding to change over following a plan

That is, while there is value in the items on the
right, we value the items on the left more (Highsmith
& Fowler, 2001, p.30).

Two of the more widely adopted agile approaches
are Scrum and Extreme Programming (XP).

2.1 Scrum
“Scrum is an agile, lightweight process that can

be used to manage and control software and product
development” (Advanced Development Methods
[ADM], 1997-2003). Scrum has three phases: Pre-
game, Game and Post-game. Pre-game is the initial
planning meeting where the development team and
the user identify major functionality and develop a
backlog list (a prioritised list of customer
requirements). During pre-game an initial plan of
delivery dates is produced, estimates are developed
and high-level design decisions are made. The Game
phase is made up of ‘Sprints’ – a 30 day period which
results in an increment of product functionality. The
development team meets daily for a 15 minute Scrum.
This meeting is used mainly to discuss progress and
any problems that may be hindering the team. At the
end of each Sprint a review meeting occurs. This is
where customer feedback is sought and selection of
backlog items that will be worked on during the next
Sprint is completed. Post-game is the closure period
where preparation for release is done. Once
documentation is completed and pre-release testing
is finished the software product is released.

2.2 Extreme Programming
Extreme Programming (XP) is a discipline of
software development based on values of

simplicity, communication, feedback, and
courage. It works by bringing the whole team
together in the presence of simple practices,
with enough feedback to enable the team to
see where they are and to tune the practices to
their unique situation (Jeffries, 2001).

Jeffries lists the core practices of XP as:
♦ Whole Team – everyone involved in an XP project

sits together and are deemed to be members of one
team. This includes the customer.

♦ Planning – focused on predicting what will be
achieved by the due date, and working out what to do
next.

♦ Customer Tests – the customer defines the
acceptance tests to show that a feature is working.

♦ Small Releases – every two weeks working
software is released

♦ Simple Design – XP teams keep the design
exactly suited for the current functionality of the
system. Design is an on-going process.

♦ Pair Programming – two programmers work
together on a task (side-by-side on the same machine).

♦ Test Driven Development – every programmer
writes tests as they write the code.

♦ Design Improvement – refactoring to create
code with high cohesion and low coupling.

♦ Continuous Integration – teams keep the
system fully integrated at all times.

♦ Collective Code Ownership – pairs of
programmers can improve any code at any time.

♦ Coding standard – to support the collective code
ownership coding is done to a standard so all code
looks the same.

3. AGILITY IN THE
CLASSROOM

The researcher chose to adopt XP@Scrum
practices (see figure 1.0) to provide the students with
the project management framework of Scrum and the
experience of Pair Programming used in XP. “Scrum
has been employed successfully as a management
wrapper for Extreme Programming engineering
practices. Scrum provides the agile management
mechanisms; Extreme Programming provides the
integrated engineering practices” (ADM, 1997-2003).

The main requirements for the students following
this Agile Method were:

♦ That functions were developed in weekly Sprints
♦ Teams will meet at least twice per week for a

Scrum (one of these must be during class time so the
user (the researcher) could be involved)

5 15 15 15 15 1

♦ Coding will be carried out by Pair
Programming practices and to a coding standard
devised by the team

♦ User will be consulted for feedback frequently
♦ User changes will be happily accommodated

into the following Sprints
The students were tasked with creating an

application that would aid them with their software
development. The application needed to have the
following functionality:

♦ Code Library – allowing storage and retrieval of
functions, procedures and code snippets for later re-
use.

♦ Time Recording – automatically recording the
amount of time spent on a particular task. This function
needed to include the ability to record the details of
the task, the project being worked on, and any
problems that were encountered. Reporting functions
also needed to be implemented.

♦ Defect Recording – allowing recording of defects
and problems encountered during a development
project along with the solution to the problem. Defects
had to be categorised and a search function
implemented so that all defects from a selected
category could be viewed easily.

The rules of Scrum suggest that a Sprint be of 30
day duration. As the students had a limited time frame
to complete the given task (seven weeks) a Sprint
was deemed to be seven days. This provided the

students with a tightly focused timeframe for which they
needed to plan. During the initial planning meeting the
students took the requirements given to them in the
project initiation document and created a backlog list.
From this prioritised list they identified the functionality
they would be working on during the following week
(the first Sprint). Once the students had the Sprint
backlog they paired off and allocated specific tasks
from the Sprint backlog to each pair of programmers.
Students were required to have two Scrum meetings
per week, one of these within class time. The Scrum
undertaken within class was used in the main to assign
the tasks for the next seven day Sprint and obtain
feedback from the user. The additional Scrum was a
short meeting during the week to discuss the work
that had been accomplished thus far. During this
secondary meeting the students were to discuss only
three questions:

What did you do since the last Scrum?
What got in the way of you doing work?
What will you do before the next Scrum?

4. TEAM WORK AND
ADAPTABILITY

The students worked in teams of four. Within the
team they were required to work as pairs on the
programming tasks. Each week the team allocated

Figure 1.0 XP@Scrum.

5 25 25 25 25 2

the tasks identified during their Sprint meeting to the
pairs. Some teams changed the programming pairs
each Sprint, other teams kept the same pairings
throughout the project. There were different advantages
to each approach. The teams with static pairings
appeared to experience more consistent productivity,
whereas the teams that swapped pairs seemed to have
a clearer understanding of the project as a whole and
to experience less conflict (there was no ‘us against
them’ mentality). The feedback on Pair Programming
was mixed. Some students enjoyed it whilst others
thought it made them less productive. All students
agreed that it made them more creative because of
the variety of ideas discussed during a session.
“Research into pair programming shows that pairing
produces better code in about the same time as
programmers working singly” (Jeffries, 2001). There
was also a general consensus that the bi-weekly Scrum
meetings provided an excellent channel of
communication between the project team. There was
never any doubt as to what the other half of the team
were working on or what should be the next task to
undertake. To ensure all individuals participated and
to allow for any non-performance to be factored into
the overall assessment result the group management
tool called Red Card / Yellow Card (EPCOS
Consortium, n.d.) was used. The guidelines that were
set for issue of a Yellow Card were:

♦ Student fails to attend a scheduled Scrum and
has not notified the group that they will be absent

♦ Student fails to attend a scheduled pair
programming session and has not notified their peer
that they will be absent

♦ Student fails to contribute to a Scrum session
or during a pair programming session

♦ Student fails to meet deadline for a scheduled
deliverable

There were no instances of any cards being issued
during the duration of the project. Use of this project
management tool made it easier to assess the group.
It allowed for the team to highlight any members who
were not doing an equal share of the work. Teams
were also required to provide documented evidence of
Sprint sessions where tasks were allocated to
programming pairs. These two things meant that the
software could be marked as a team effort with the
researcher certain that all team members had
participated equally.

 The agile emphasis is on adapting to change.
“Facilitating change is more effective than attempting
to prevent it” (Highsmith & Fowler, 2001, p.29). In the
fourth week of the project the researcher added a new
requirement. Teams were instructed to provide a fully
operational help system covering all three main
functions of the application. Students added the
additional requirement into their Sprint planning and
completed the application with all the required
functionality by the project deadline.

5. REFLECTION AND
RECOMMENDATIONS

The students as a whole enjoyed the experience
of working within a development team. The only
negative feedback was about the pair programming
as some students thought that it made them less
productive. Possibly this would change as they
became more familiar with the techniques. If
undertaking this exercise again the researcher would
enforce the changing of programming pairs during the
project. It appeared that the teams who had to adapt
more frequently learnt the most about communication
and had the greater team spirit. The researcher would
also change the structure of the assessment so that
the teams were required to accommodate a number
of user requested changes to the functionality of the
software. With only one major additional request from
the user the students got comfortable with their task
lists and lost sight of the fact that the whole point of
the Sprint was to continually set short term
development goals. The teams that had the static
pairing of programmers commented that it would be
unlikely that any yellow or red cards would be issued
as there would never be a majority vote to issue the
card. Given that the tool is there to deal with serious
non-contribution of a group member the researcher
decided that the reasons for using the tool were still
valid. The Agile focus on teamwork and communication
involving all stakeholders in the project provided the
students with a valuable learning experience.

References
Highsmith, J. & Fowler, M. (2001). The Agile Manifesto.

Software Development Magazine, 9 (8), 29-30
Highsmith, J. (2002). Does Agility Work? Software

Development Magazine, 10 (6), 30
Jeffries, R. (Aug, 2001). What is extreme

programming? Retrieved March 25, 2003, from
http://www.xprogramming.com/xpmag/
whatisxp.htm

Advanced Development Methods, Inc. (1997-2003).
What is Scrum? Retrieved March 12, 2003, from
http://www.controlchaos.com

EPOCS Consortium. (n.d.). Red Card/Yellow Card.
Retrieved July 14, 2002, from http://
www.cs.ukc.ac.uk/national/EPCOS/bundles/
showbundle.php3?id=44

