
492492492492492

Po
st

er
 P

ap
er

 in
 P

ro
ce

ed
in

gs
 o

f t
he

 1
6th

 A
nn

ua
l N

A
C

C
Q

, P
al

m
er

st
on

 N
or

th
, N

ew
 Z

ea
la

nd
 J

ul
y,

 2
00

3 
(e

ds
) M

an
n,

 S
. a

nd
 W

ill
ia

m
so

n,
 A

. w
w

w
.n

ac
cq

.a
c.

nz

Complexity: A vital Aspect of Learning
Programming

John McPhee

Christchurch Polytechnic Institute of Technology
Christchurch, New Zealand

mcpheej@cpit.ac.nz

This poster reviews research on software
complexity. Cant et al (1995) defined complexity as
the characteristics of software which affect the level
of resources used by a person performing a given
task on it. Complexity is a concept of paramount
importance to computing. It is central to most facets
of software development.

 Software development effort estimation methods
include a complexity factor in determining the
development time required. Given this contributory
role, improving our understanding of the nature of
complexity offers the potential to help speed up the
software development process. It may also improve
our ability to effectively teach programming.

Considerable research has been carried out in an
attempt to devise an effective measure of complexity.
The results of this research are not totally convincing,
with no clearly identified metric emerging as yet.
McCabe’s cyclomatic complexity and Halstead’s
program volume are two of the best known metrics.
More recent research has broadened by taking into
account the programmer, and redefining complexity
as an interaction between aspects of the software
code and the programmer. Early research in this area
has been done by Ehrlich & Soloway with their ‘control
flow plans’ and ‘variable plans’, builds on the concept
of ‘chunking’. This wider perspective has provided
room to incorporate comprehension and cognitive
styles as contributory factors to software complexity;
concepts that have high face validity yet have been
given little attention to date.

Combining and reapplying the research from these
two approaches, promises to provide a much stronger
understanding of what constitutes program
complexity and thus help identify significantly more
accurate estimates of development effort, optimal
programming languages, and improved programming
teaching methods.

References
Cant, Jeffrey, & Henderson-Sellers (1995) “ A

Conceptual Model of Cognitive Complexity of
Elements of the programming process”.
Information and Software Technology 1995
37(7)

Ehrlich,K. & Soloway,E.(1984) “An empirical
investigation of the tacit plan knowledge in
programming” in Thomas, J.C. and
Schneider,M.L. (eds) Human Factors in
Computer SystemsAblex Publishing (1984)
pp113 - 133

Halstead (1987) Elements of Software Science,
Elsevier/North Holland

McCabe & Butler (1989) “Design Complexity
Measurement and Testing” Communications
of the ACM, Dec 1989, 32(12)


