
7 97 97 97 97 9

Fu
ll

pa
pe

r i
n

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

, N
ew

 Z
ea

la
nd

, J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz

ABSTRACT
Today’s computing students arrive in our

classroom familiar with a wide range of
technology. They are used to rapid change and
fast paced, interactive environments that this
brings. This is the Playstation generation and
engaging them in the classroom requires us to
be innovative and creative with our learning
strategies. Integrating new technologies such as
the latest console and computer games is not a
problem when our students have grown up with
them in their living rooms. Indeed, the teaching
of games development becomes a logical addition
to any computing curriculum when you consider
that the games industry has outstripped
Hollywood and is now worth US$25 billion dollars
a year.

In this paper we will discuss an approach to
teaching games development that aims to inspire
a sense of creativity and a desire for innovation
in our students. However, this enthusiasm and
creativity must be balanced with the need to
acquire often complex mathematical and
programming concepts. Games development can
be fun but it is never an easy option. We will
explore an approach that uses media that our
students are familiar with, so that their ideas can
be expressed with tools that are truly engaging,
interactive and exciting and discuss the
pedagogical issues that underpin this.

1. INTRODUCTION
The battle for consumer’s hearts and minds in the

games console market is escalating as Microsoft takes
on Sony for domination in this field. With the gaming
industry worth over US$25 billion per year according to
the NPD Market research (cited at the Electronic
Entertainment Expo, 2003) , the system manufacturers
are relying on a constant flow of new and increasingly
sophisticated software releases to drive business. This
in turn sees educational institutions targeted as a
source of new recruits to the world of games
development, resulting in a proliferation of new courses
in this field. The challenge for those teaching in this is
area is the marriage of academic quality and sound
pedagogical underpinnings with the right stimuli needed
for the creative gamer.

You enter the lab. It is dark and warm with heads
focused on monitors, emotion alive in the faces of all
around. This is the reality of online games testing
rooms in some of the major universities around the
world. These are the teaching institutions that have
realised the potential of the games industry not only
as a serious business and source of future employment
for their students but in awakening the minds and
imaginations of the Playstation generation.

This paper discusses the creation of a games
development course within the Bachelor of Computing
Systems at UNITEC. The course has itself been
developed as a role-play in which students adopt the
persona of a games developer. Some students might
be temped to select such a course expecting anything

Teaching Technology to the
Playstation Generation

Paul Kearney
Stephen Skelton

School of Computing and Information Technology, UNITEC
Auckland, NEW ZEALAND.

pkearney2@unitec.ac.nz

8 08 08 08 08 0

with “games” in the title to be an easy option. As this
paper will show, it is not and games development uses
a variety of software development techniques and skills
drawn from a range of methodological approaches
(including Macromedia and Microsoft) and it requires
student’s to grasp the complex nature of game
structures, interactive digital media, applied physics
and mathematics. In other words, games development
is a challenging paper that pushes the boundaries of
what we thought our students were academically
capable of as well as unblocking their true innovative
and creative powers.

2. PLAYING THE GAME
Many of our students come to class with an

extensive knowledge base that has been developed
through gaming. If our goal as educators is to excite
and engage our students then what better way to do
this than by applying the same innovations that are
seen in the games themselves?

With this in mind, we have developed a model for
the games development course that involves a process
of:

1. Setting up a “Game Development business” –
this gives the students/groups an identity.

2. Evolving a team, roles and a methodology –
this involves a commercial group production process.

3. Creating a schedule for envisioning,
storyboarding, designing, testing and releasing a
product.

4. Building an educational or commercial game in
3D Studio Max, Maya, Director or Flash for a possible
commercial release.

5. Presenting the “finished product” in a
“celebration”.

3. THE GAMEPLAY
In teaching games development to this audience,

we considered that there were some basic principles
that must ourselves follow in order to achieve a creative
learning environment:

a) Develop games for a broad audience – your
games and teaching must embrace both a male and
females.

b) Innovation is the key – look at cutting edge
applications and help your students to create these –
Myst was a winner in its time with beautiful graphics,
the Quake engine is regarded by many as the staple

of physics games engines, Age of Empires was one
of the first with a historical theme and multiple victory
conditions.

c) Design by playing – demonstrate examples and
critique commercial games.

d) Include critical decision making as part of your
gameplay and classes.

e) Start with introducing prototypes and testing
early.

f) Make the first minutes of gameplay and classes
very exciting.

g) The player must be the hero or heroine (not
you as the designer or programmer). Engage their
minds…after some sweat they must reach victory.

h) Get the player and student to invest in your
game and classes – help you to build the game as a
group and build assets e.g. use Half Life in architecture
design or gmax to add assets to Dungeon Siege.

i) Create a great story and excellent storyline –
it’s at the basis of every culture.

j) Create a series – help your students to think
about characters that can develop (like Lara and Zelda)
and games that create franchises (like the Star Wars
series). Similarly find the links to other courses and
encourage practical end of degree thesis or project
work to encompass the same professionalism that
you introduce.

k) Pay attention to detail e.g. graphics, sound.
l) Create an intuitive interface that’s easy to use.
m) Provide a multiple of different experiences, from

single to multiplayer (individual to group assessment),
co-operative play and so on.

n) Games are an art and so, like life, are
unpredictable – you have to balance what you can do
practically (your budget and schedule) with what you
dream/envision (the quality).

4. THE DEVELOPMENT
CYCLE

The final point above (n) is the most difficult. The
current tertiary climate means that it is difficult to
optimise educational settings to develop computer
games. The cost of games development can be high
and with budgetary restrictions this can cause
challenges. This fact is often not helped by the stigma
associated with playing computer games and the
banning of such on campuses (inherent in this
assumption is the failure to recognise that the
development of a game is a very different matter to the

8 18 18 18 18 1

Fu
ll

pa
pe

r i
n

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

, N
ew

 Z
ea

la
nd

, J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz playing of it). Today’s state-of-the-art games use

cutting edge, and very expensive technology, and
the systems to develop such programmes are
even more costly. The cost of developer kits for
the next generation of game consoles is upwards
of US$50,000, but with the industry predicted to
gross $US100 billion this decade, the initial
investment appears worthwhile.

 The schedule is the next stumbling block.
Games development covers everything from
texture artists to lighting techniques, from particle
physics to spatial mathematics, and of course it
includes some very sophisticated programming.
Early versions of the Quake 3D engine totalled
well over 100,000 lines of code and took many
years to write. Most games companies today
either build on what they have written during years
of expensive development time (reusable code)
or they licence the technology from another
company and concentrate on creating the
storyline and characters. When gamers are
playing popular titles such as Soldier of Fortune,
Half-Life, Counter-Strike, Sin, Star Trek:Elite
Force, James Bond 007, they are really playing
Quake with different characters, different
graphics, and a new storyline. All of these games
use a licensed version of the Quake 3D engine.

5. DEVELOPING A GAMES
ENGINE

To develop a commercial games engine today
would take an immense amount of skill, talent,
and funding. Areas that would need to be learnt,
and therefore taught, are as follows.

5.1 Low level programming languages
Many of the commercial engines are written
in Assembler language. Although very fast
and very powerful, machine-level
programming is difficult and time consuming
to write. Assembler programmers are very
rare today, and this is a skill that is being
lost as it is not currently taught in
mainstream learning institutions. The C
language and more recently C++, are also
used, again because of the speed and
ability for the programmer to have more
control at the hardware level. High level
languages such as Delphi and Visual Basic
have been designed for rapid application
development and tend to insulate the
programmer from the hardware. This is
undesirable and makes them a poor choice
for coding a games engine. Java is rapidly

gaining popularity with its cross platform abilities.
Coding in Java will make it easier to port the
product to other platforms at a later date, however
most game consoles such as Playstation and
Nintendo, use a combination of Assembler and C.
5.2 Graphics and 3D programming
Most computer games use one of two graphics
methodologies - DirectX or OpenGL. Both of these
options provide the programmer with an Application
Program Interface (API) that allows the hardware
manufacturer to build to a defined set of features
for use. OpenGL is the more popular as it covers
multiple platforms, DirectX was developed by
Microsoft. To program either of these technologies,
one needs to understand the many facets of 3D
programming. These include 3D vector tables and
their manipulation using trigonometry, vector
calculus, and linear algebra, and the complex art
of lighting and texturing techniques, which borders
on the role of a graphic artist (Monet spent many
hours painting London’s House of Parliament just
to understand the interplay of light and shadow).
Modern 3D video boards are also capable of real
time rendering for 3D objects. Because rendering
is performed on the video board the load on the
processor is reduced, however, the complexities
for the programmer are increased.

Many of the expensive Game engines that are
available for licence include all the features needed.
However they still require a lot of skill and knowledge
to configure the code following the purchase. The
following areas may or may not be inclusive of the
engine, but still fall in the realms of the game developer.

5.3 Game Physics
As games strive for reality, the simulation of real
life becomes increasingly important. If a golf ball
in Microsoft Golf does not behave correctly when
sliced (magnus effect), or a rally car in WRC did
not drift through the corners correctly (angular
velocity), the game would not sell. The latest game
engine developed for Unreal Tournament by Epic
Games, uses ‘ragdoll’ physics. The program
computes the point of impact when a character is
shot and the character falls accordingly. Particle
physics, collision detection, collision response,
rigid body kinematics, Runge-Katta integration and
even cloth simulation, all need to be modelled
correctly if virtual reality is to be achieved. Physics
algorithms need to be understood and then
transposed into programming code.
5.4 Artificial Intelligence
Terms such as machine learning, fuzzy logic and
neural networks are well known, but will a

8 28 28 28 28 2

computer program ever think like a human?
Probably not for a long time, but what we are
attempting in computer game code is the
emulation of intelligence. In most games this is
done by creating algorithms such as emergent
behaviour and group dynamics, such as flocking.
The basic technique is to emulate human
behaviour without appearing to have the game
“cheat”. This skill is more art than science.
5.6 Animation
Animation is pivotal to any modern computer
game. However, the techniques used by game
developers are many and varied. Some games
use actual film clips for the cut scenes between
levels. There are games that use stop-frame
animation and even some even use claymation
for the entire game (such as The Neverhood from
Dreamworks Interactive). There are many tools
available today that enable even the novice to
create a computer animation, however, the real
skill lies in choosing the correct technique for the
subject and knowing how to create the desired
effect for maximum impact.
5.7 Networks and the Internet
One of the main attractions of many computer
games today is the interaction with other people.
A large portion of the game industry is devoted to
multiplayer games, both on a small local network
and on a larger, even massive scale, over the
Internet. Massive Multiplayer Online (MMO)
games have created virtual worlds where upwards
on 100,000 people play simultaneously. One
attraction for the player is the built in chat screen
of the game. An entire new language, similar to
texting on a cellphone, has evolved to enable
players to play and converse at the same time.
The MMO is popular with developers because it
offers the opportunity to charge a monthly
subscription fee and therefore offers a more stable
business model and cash flow than for one-off
games sales. Skills needed by the developer
include networking and security issues.
Synchronising the game with a large player base
requires some real in-depth hardcore
programming.

6. DEVELOPING THE STORY
Once the games engine is in place, a storyline

needs to be added complete with characters, sound,
game levels, and a well thought out user interface.

6.1 Characters and Plot

The game must have a goal (an ending) that
players feel compelled to achieve. A good
storyline and great gameplay often compensates
for low-budget graphics and visual effects (just
look at Tetris!). The gameplay is such that the
player becomes addicted and must complete that
next level. First person “shooter” games such as
Quake and Half-life have that addictive quality.
Role playing and “God” mode games such as
Diablo and Warcraft entice the player to achieve
that next level by progressively becoming more
challenging but allowing the player the satisfaction
of winning early in the game. Good character
design often creates a cult figure, such as Lara
Croft of Tomb Raider. This alone can ensure future
markets for the sequel. Developing a storyline for
a game is similar to writing a script for a play or a
movie and many of the same skills and creativity
are required.
6.2 Audio and Music
If you have ever played or watched a game with
the speakers turned off, you can see how much
added effect sound and music has in creating
the game players environment. Take the sound
away and often the game becomes just a cartoon
on the screen. Add realistic sound effects and
appropriate background music and the player
becomes immersed in another time and place, a
realm of fantasy. But the art of audio involves talent
and skill. Admittedly not every game developer is
an accomplished musician, but adding the music
and timing the sound effects requires a knowledge
of Microsoft’s Direct Sound API, and the skill of
being able to code background sound effects. A
sound is just a data stream and has to be read
and processed by the game program. The player
does not want the game to pause while “BANG,
CRASH, BOOM” is being played.
 6.3 Level design
A good game designer often overlooks the fact
that the player will require levels of difficulty within
the game. The player will want to pause at varies
stages throughout the game after achieving a
certain level of success, rather like the chapters
in a book or the episodes in a television program.
However this is not as easy as it appears. The
developer does not wish to create new game code
for each level, nor does the player wish to just
have the blocks fall down at a faster rate. For a
platform game or puzzle, the level of difficulty
needs to increase but at the same time be
achievable. A Role Playing Game (RPG) game
follows a storyline and should build on this
progressively. The skills of the programmer will

8 38 38 38 38 3

Fu
ll

pa
pe

r i
n

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

, N
ew

 Z
ea

la
nd

, J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz include Object Oriented Programming

(OOP) and modular design with reusable
code. Rather like the next step up from a
game engine, the game itself needs to
encompass the ability to change levels
without re-coding the game.
6.4 GUI programming and User Interface
Many games live and die on their user
interface. Does the game use the mouse
and/or the keyboard? Does it have a chat
window? Are there shortcuts? Can the player
configure the controls or customise the
graphics? All of these questions become a
critical part of what makes a game
successful in the market or what makes it
“bomb”. Good gameplay can overcome a
bad interface but players are becoming more
and more demanding and in many cases
expect to be able to completely change the
look and feel of the game through the set-
up option.

7. ONCE THE GAME IS
WRITTEN

Quality assurance in the form of game testing
is critical to ensure that the product is reliable
and does what is expected. Developers must also
consider issues such as packaging, marketing
and publishing. And of course, after-sales support
is paramount in today’s environment.

7.1 Game testing
Many people enter the Game Development
Industry as a tester, moving up through the
ranks. To write good games you must play
games. Just as an accomplished book
author spends time reading books before
developing their own technique and style.
Team work and communication skills are
essential skills here as well since you must
be part of the development team, feeding
back constructive advice and comments to
the developers. Imagine that tact and
diplomacy required to tell a hardcore
developer that their code doesn’t work –
especially when he or she has been coding
for 24 hours straight on 15 cups of double
shot espresso!
7.2 Packaging and presentation
Game design does not stop at the actual
product. The packaging, presentation and
marketing of the game is an essential factor
in whether customers will purchase it, even

in whether the developer gets a publishing
contract. Many software products are now
distributed over the Internet. However, this is often
impractical for games due to the size of the files
involved. Downloadable demonstrations and trial
versions are often developed as a ‘teaser’ for the
market, but this must be thought out carefully as
many players exhaust their curiosity playing the
demo. Novel and creative packaging also sells
product, but there are now industry standard
guidelines on how software is packaged for
distribution. The trick is how to be creative within
these guidelines.
7.3 Game Server Management
Increasingly games now offer Internet content in
some or all of the playing of the game. Large farms
of Internet servers are installed to cope with the
massive load incurred through online gamers.
Managing these systems is a specialised task.
However, the developer must be aware of what is
involved to be able to create an online game that
is manageable and will perform adequately on
today’s hardware.

Conveying an appreciation of all of this in the
classroom is not a simple task. Many students would
willingly sign-up for three to four years tuition solely on
game development (La Trobe University in Melbourne
has recently announced a new four year programme,
majoring in Games Technology and has been inundated
with applicants). For us, we are offering an introduction
to the topic in a single semester course.

8. COURSE DEVELOPMENT
UNITEC’s introductory course on game development

is a limited “first step” in the field. We have started our
journey by developing an introductory course with a
focus on the programming prerequisites that briefly
covers the topics described above. These are covered
one per week, over a single semester. As acceptance
for game development increases, this course can be
extended to develop an introductory course with no
prior experience and culminating with an advanced
course on game development. The long term objective
would be to run numerous different classes, each
covering a separate areas of this highly complex yet
exciting subject, even culminating in a Degree of
Computer Game Development!

Initially we have used Macromedia’s Shockwave as
a game engine. This decision is based on enabling the
student to produce games, from simple through to
complex multiplayer, without having to be concerned
with the specialised and highly complex 3D game
engines (there is simply not enough time in a single

8 48 48 48 48 4

semester course to introduce these products). To further
reduce development time and to create a realistic
environment, students work in groups, each taking a
part of the production cycle. They are asked to create
a company name and logo and include this in the credit
screen of their game to provide a feeling of ownership
and pride.

For more advanced students, Shockwave supports
a plug-in physics engine (by Havok), and 3D rendering
through 3D Studio Max. Students do not have to code
the concept of gravity, friction, or elasticity, as they
can apply these properties to an object and add
textures and lighting as required.

By using Macromedia’s Director, sounds, music,
and animation can all be coded with relative ease.
The game is then produced either using a full screen
projector or as an object within a web page.

The final objective is for the group to create a game
that demonstrates all of the elements that are taught.
From the initial concept and planning, through to
creating a storyboard and finally compiling and testing
the game. Presentations and critiques are done by
the whole class and marks are attributed for original
and unique ideas in gaming.

9. THE END GAME
Many students attend to programming class

disillusioned by all that coding, but when they apply it
to games and can see the result of their work in a
short space of time in 2D or 3D spaces, the light of
awareness and accomplishment dawns. They get
excited and are filled with energy. Suddenly it matters,
it has an affect on “mass” in the real world, it does
something they can relate to and it launches them at
high speed into the very lucrative area of games
technology. Engaging students in exciting and
energising tasks is crucial to deep learning. These
console and computer game fans have been profoundly
influenced by this sort of media, so why not indulge
them by immersing them in it to create breakthrough
creativity. This may be exactly the type of breakthrough
media that computer science students want the
opportunity to produce.

10. THE GAME OBJECTIVE
It is our hope that students are able to at least

conceptualise how they could create a computer
application or game, which meshes together
converging technology and transforms life, potentially
a game so incredible that it causes millions to rush
out and buy it. We also want students to gain an
appreciation that game development is serious

business and that this is not a “back room” industry.
The original computer game was created back in 1961
on a mainframe computer at the Massachusetts
Institute of Technology (MIT). It simulated an
intergalactic battle and was tilted Spacewar. This was
the game that started the whole industry and it was
developed by a student (DeMaria, R. and Wilson, J.
2002). Gaming today is a serious business; Myst
generated US$320 million for the publishers, the
developers receiving 10% of this. The Electronics Arts
Game “The Sims” has recently overtaken Myst in terms
of revenue and Nintendo’s character “Super Mario” has
reportedly generated more than US$500 million since
conception.

11. CONCLUSION
The universe is itself a game of massive forces,

which over time has seen sorcerers, shamans and
prophets seek to understand it through a combination
of astrology or mercurial alchemy. Our society has
spawned cultures based on these patterns and
tapestries and bred geniuses who come from time to
time to tell us what it all means. The electronic universe
is little different: The current breed of virtual worlds
have given rise to Zelda (legendary creator Shigeru
Miyamoto), Lara Croft (Toby Gard), Age of Empires
(co-creator Brian Sullivan) and Starcraft (Blizzard
Entertainment). Behind every gaming hero is a talented
and innovative game designer.

Gaming is about finding a way to tap into our
dreams so that we are able push the boundaries of
possibility, engaging in new, exciting and energising
ways. Although today we might see computer games
as a new and developing industry, it is one that lives
on the outer edge of our computing knowledge and
which is already big business. It is our hope that in
this paper we have been able to give you an insight
into the complexities of computer games development
and demonstrate how this can be brought into the
classroom in an engaging, challenging and
pedagogically valid way.

REFERENCES
DeMaria, R. and Wilson, J. (2002) .High Score! The

illustrated history of electronic games. McGraw
Hill/Osborne, California.

Electronic Entertainment Expo (2003). Retrieved on
28 May 2003, http://www.e3expo.com/
media_center /articles/051203_game
Makers.shtml

