
8 58 58 58 58 5

Fu
ll

pa
pe

r i
n

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

, N
ew

 Z
ea

la
nd

, J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz

examples of computing practice where IT projects
did not realise their potential, to highlight possible
reasons why computer systems underachieve.

The main reason established for the problems
was that the development activity occurred in
relative isolation from the final users, highlighting
the fact that the programming experts felt the need
to ‘go it alone’, as they were the specialists in
the system.

It then suggests a framework plan, which may
reduce the risks of implementing a new system;
covering the areas of problem, previous work,
procedures, policies, perspectives, people,
politics and process. It also suggests ways in
which the IT industry can learn from other
disciplines to achieve better results.

Keywords:
process, project management, software failure

1. INTRODUCTION
Software engineering is no longer a new

industry. While not as old as some other
professions, it has reached an age where we
should expect systems to be built with little fuss.
So why do we still hear stories of applications
gone wrong and users not satisfied?

Gathering reliable statistics on software
failures is not an exact science. Most of the
information comes out of the US, and it is not

clear how repeatable the statistics are in other
countries. The news is disturbing through. In 1994 it
was estimated that people working on projects that
were subsequently cancelled made up as much as 15
percent of total U.S. software projects, totaling up to
$14 billion per year. Cancelled projects are usually 1
year behind and 200% over budget (Jones, 1994).

McConnell noted the following software failures:

♦ “Problems with the baggage handling
system caused a delay of more than a year in
opening Denver International Airport. Estimates
of the delay’s cost ranged as high as $1.1 million
per day.
♦ The FAA’s Advanced Automation System
overran its planned budget by about $3 billion.
♦ The IRS bumbled an $8 billion software
modernization program that cost U.S. taxpayers
$50 billion per year in lost revenue.
♦ After topping $44 million, a long series of
overruns forced California to cancel its motor
vehicle registration system.
♦ The B-2 bomber wouldn’t fly on its maiden
flight because of a software problem”
(McConnell, 1999).

In 1996 a survey was undertaken of 360 companies
in the US which showed that 73% of corporate software
projects were canceled, over budget or late (King, 1997).

This paper is an opinion piece from an industry
professional, using four short illustrative first-hand

Putting the P in Programming: The
importance of people and process

Carol Kelly
Professional Development Ltd

Palmerston North, NZ
carol@prodev.co.nz

ABSTRACT
The causes of software failure have been well documented over the years, yet still the failures

continue. This paper looks at causes of software failure, and compares IT projects to other
disciplines. It is written as an opinion piece from an industry professional and uses four illustrative

8 68 68 68 68 6

examples of computing practice to highlight possible
reasons why computer systems underachieve, and
suggests ways in which the IT industry can learn from
other disciplines to attain better results. While study
of the human factor in software development may not
be considered novel or new, the fact that software
development projects continue to fail because of the
human factor means that continued attention needs
to be given to this area.

2. CAUSES OF FAILURE
A 1995 KPMG survey listed the following as the

top 6 reasons why software projects fail.

♦ Project Objectives Not Fully Specified (51%)

♦ Bad Planning and Estimating (48%)

♦ Technology New to the Organization (45%)

♦ Inadequate/No Project Management
Methodology (42%)

♦ Insufficient Senior Staff on the Team (42%)

♦ Poor Performance by Suppliers of Hardware/
Software (42%)

(KPMG, 1995)
One possible contributing factor to all of the above

could be that our industry has traditionally tried to “go
it alone”, and undertake the whole project itself. “We
turn to our IT experts (programmers/analysts) and
expect them to also be experts in project management,
process and communication…What many of those
analysts lack are the communications and people
skills needed for key tasks such as eliciting exact
systems requirements from users...Soft skills are
talked about the least, but they’re probably the most
important’’ (Durbin, cited in King 1997).

There is a wealth of experience in other industries
(such as architecture and engineering) that could
provide advice from hundreds of years of making
mistakes. Much of what the IT industry is ‘discovering’
in research, particularly as it relates to interacting with
customers and process, has already been concluded
in other research areas, most notably social sciences.
Yet we seem to think we were the first ones to encounter
these problems. For example, it seems to be a
revelation when it was concluded that a customer
changes their mind frequently when they are unclear
as to what they wanted in the first place. There is
even a name for it – ‘scope creep’. This has been
known in the building industry since the first structures
were created. For example in a report on Florida’s
roading project overruns, it was concluded “In the
projects we examined, cost overruns were

predominantly related to problems that occurred during
the planning and design process prior to construction,
including: (1) errors and omissions in design plans,
(2) inadequate coordination with local governments and
utility companies, (3) problems in identifying the scope
of work to be done during project development, and
(4) changes in project specifications after designs had
been completed” (Turcotte, 1997).

Architects have been leading building projects for
years. The design statement on the website of Fennie
and Mehl, Architects, San Francisco reads:

“All really good design, whether the project is a
piece of furniture or a towering skyscraper, is based
on one premise ... meeting the expectation and need
of the user, both on a functional or physical level and
on a spiritual or psychological level…The design or
building must meet the requirements of our physical
world as well. It must be of sound form and be
constructable; it must function efficiently for its
intended use, and finally it must be a pleasurable and
memorable place... a place that invites the user to
return.

The Architect’s task then is to blend all of these
seemingly varied forces into a cohesive whole, and
effectively communicate the design in such a way as
to guide the client through the design process, and
subsequently, the builder during the construction of
the building. The successful completion of the original
design intent is dependent on how well the Architect
can shepherd the project through the entire process”
(Fennie and Mehl, 2003).

As experts, programmers and systems analysts
create the system. Often it is concluded that users
do not understand the technological requirements, and
therefore are not ‘useful’ during this creative process.
Then the focus is on ensuring the requirements of the
physical world rather than necessarily meeting the
expectation of the user. What has been missed in
this assumption is that the users are experts in how
the system needs to be used, and therefore should
play an important role in its creation from start to finish.

The situation is changing. Evidence of this can be
seen in one of the latest methodologies for software
engineering. Extreme Programming is considered a
radical new method of programming. It relies on
programmers and customers working in the same
environment and a design-as-you-go approach (Krill,
2002).

Comments from a panel of experts at a CTO forum
in April 2002 about Extreme Programming included
such statements as:

“Part of what changes when a customer is in the
same room is the software ends up getting

8 78 78 78 78 7

used…There’s just a whole emotional binding process
that happens when involving the whole team through
the whole process.” Rowland Archer, CTO at Haht
Commerce, in Raleigh, N.C.

“If you can get people in the same room, you get
people at least communicating, in ways that they
otherwise might not have” Dave Burleigh, Technology
Visionary, ValutationRepairman.com (both cited in
Krill, 2002).

It should not take radical programming
methodology to reach the conclusion that the more
the users are involved in the system design, the more
likely we are to build a system that will get used.
They may not be able to solve the data structure
questions, but they could give all the help necessary
for the light bulb to be turned on in a programmers
head.

3. ILLUSTRATIVE EXAMPLES
The following four examples have been written from

the personal experience of the author. They are not
intended to be case studies of the organisations: they
have been written to give enough detail to highlight
the points raised. The organisations come from a
number of different countries and sectors, over the
past three years. No names have been included to
protect the privacy of the organisations concerned,
and to maintain the professional confidential
relationships the author has with these organisations.
The examples have been chosen to highlight the
issues, rather than a detrimental analysis of the
organisations concerned.

Example 1
A telecommunications company was looking to

streamline its systems. The company had started
out as the amalgamation of a number of smaller
companies, and had many legacy systems making
up its operations. As an example, it had 24 separate
billing systems. The majority of these had come from
the previous companies, and most only processed a
few, but very important customers. Much of the billing
to the largest 20 customers was very customised to
how they wanted to receive their information. These
customers included whole small countries, and it was
considered very important from a marketing point of
view to keep them happy. If a new billing system did
not meet the needs completely, those customers were
left on their old one. Marketing did not consult with
Billing (and vise versa) as to the possibility of new
features or alternative methods, as they considered
that if the customer was happy already, they were
not going to upset them with a new way of charging.

The operations side of the business also had a
number of software applications, that had been created
and evolved as new telecommunications systems
became available. However the old networks could only
be run by some of the old applications, as they were
too entrenched to move around.

The company had decided that with new products
and a more global perspective, they wanted integrated,
end-to-end systems. It enlisted the services of an IT
consulting company, that sought to implement three
new linked systems for Customer Relationship
Management (CRM), Order Management and Billing.
This new ‘super-system’ would replace the existing
legacy systems.

It was the job of the consulting company to configure
the new system, eliminating legacy where possible and
incorporating it seamlessly where it was not possible.

Many people were involved in the configuration of
the new system, from within the telecommunications
company and the consultant company. There were
approximately 300 people linked to the project in some
way. They were mostly housed in one building, that
was in a different city from the majority of the users
(who were spread across many cities).

The process people were largely business analysts
that had come from a systems background. They
documented the new processes end to end. The
difficulty was that some of the crucial legacy systems
in Order Management (mostly related to the allocation
of telecommunications network resources for
customers) could not be replaced, and therefore
required work-arounds. The systems people designed
the interfaces between the new and old, and tested
them internally. The process people documented how
they would flow between one system and the next,
based on what the systems people had done. When
the trainers started working on how to train the users,
they discovered that the system had turned a five
minute task into a 25 minute one, as much of the
information from the old system had to be back-filled
manually into the new system in a number of different
screens. They raised the alarm that users might refuse
to accept the new system, but the IT consultant
company was too far through the implementation to be
able to change. The telecommunications company
management initially approved the system, but when
users refused to use it, they rejected it and after two
more attempts over three months to improve the timing,
the IT company was eventually removed from the job
with large losses. The billing system was implemented,
but became the 25th billing system that the company
maintained. The CRM system was configured and
modules of it were used, however it did not link to any
order system, and operated stand alone.

8 88 88 88 88 8

In hindsight, many lessons were learned. The
project was ambitious, and as such was conducted
mostly behind closed doors. The 300 people working
on the project mostly communicated with each other,
rather than getting out into the user groups. Many had
not been to the locations that the users of their system
would be operating in, to see what they did and how
they did it. They were doing ‘blue sky’ development,
the perfect system. They did not want to take the
‘baggage’ with them, so chose to ignore that fact that
it may exist. They discovered in hindsight that one or
two ‘friendly’ superusers do not necessarily represent
the organisation, and that the baggage does not go
away just because we cannot see it. Process people
should work with the people, not the system designers.
They should be telling the designers what is needed,
not the other way around. If the system could not be
successfully configured, it would not have been
purchased from the vendors in the first place, rather
than letting the IT company take the loss after the
system could not deliver. Had the users been involved
in configuring the system, seeing the benefits of the
new one and helping creating the workarounds, there
could have been acceptance.

Example 2
This example concerned an educational

institution’s student management system. The system
collected student information - mostly personal
details, academic history and course details. The
system was designed and built in-house and had grown
over the years as needs were identified. Many sections
used this system, from front line staff, through to
enrolment staff and departments. The computing
department were moving to a Windows environment
and decided to take the existing student look-up
module and recreate it in a GUI environment. Given
that it was mostly an exercise in how they would
develop in the new tool, they relied on their knowledge
of how the system worked to create the new look.
Without consultation with the users as to how they
interacted with the look-up screens and what they felt
could be improved, a system was created and released
it to the users.

The old system had its uses, but had serious
limitations in terms of functionality. Users had to go to
other parts of the system to act on what they had
found in the look-up part. The users found all the
frustrations with the old system were contained in the
new one, and consequently there was limited take-up
of the new application. The new system only contained
what the old one did, but because users now had to
go between two systems, rather than between two
modules of the old system, it did not add the value it
could have done.

Example 3
This involved a visit to a bank. While opening an

account at a bank, the author experienced an
interesting situation. The customer service person
needed to print some forms to open the account from
their local intranet. The intranet had been recently
revamped, and from a non-user prospective looked well
organised, and visually interesting. However, the forms
the officer required were not where she was expecting
them to be. She found one, but could not locate the
second one needed. Luckily there was a link on the
new site to the old intranet, which had not been taken
off-line. She quickly went to the location where all of
the forms were, and printed the required ones.

This leads the author to question if the process of
setting up a new customer was considered when
designing the new intranet. If it was, surely all of the
forms would have been in the one location.

Example 4
An investment bank had been taken over by another

bank two years earlier. The decision was made to
implement the parent bank’s system for storing and
valuing share portfolios. The problem was that the old
system did not require the rigourous balancing of the
new one, and the data was too corrupt to do an easy
migration. They had to employ a large number of
temporary staff to clean up the data and migrate to
the new system. These staff had little idea of what
was required, and took a long time to get up to speed
with what the new system was supposed to do, and
the process by which a portfolio was valued. When
the job was completed after many months, they were
then given the task of documenting the process of
how to value a portfolio - something they would have
found very useful at the start. Many hours were lost
by using the new system incorrectly, as the process
was not clear. Had the project started with the process
analysis instead of going straight into the data
conversion, it would have been less stressful for the
team and the customers.

4. SUGGESTIONS FOR
IMPROVEMENT

When approaching a systems development, it is
important to realise that there is more to the exercise
than the technology. Long after the developers have
completed the system, the users will still have to make
it perform their tasks. Therefore they have a huge stake
in what is developed, and often their concerns are
overlooked, they are labeled ‘difficult people’ or their
requirements are not developed due to constraints of

8 98 98 98 98 9

time or programmer skill level (ie we do not know how
to do it that way). None of this information is new, but
it has been the experience of the author that it
continues to be overlooked. Therefore a framework
for ensuring that these factors are considered is a
useful tool.

As part of the plan for a systems development, a
people perspective needs to be highlighted. The
following factors should be considered as part of that
plan:

4.1 Problem
Make sure that the system being developed is

actually going to solve the problem. In the
telecommunications company case, they had 24
different billing systems. The last five were supposed
to be the one that replaced them all. They ended up
just adding to the list, because they could not meet
the needs of all the existing customers. In the
educational institution’s case, a product was
developed that no-one had asked for. We did not solve
any of the problems the users had, so there was
limited use of the product.

4.2 Previous work
Careful notice needs to be taken of what has

occurred previously. This will alert developers to the
possible minefields that might be lurking in an
organisation. In the telecommunications case, an alert
would be the increasing not decreasing number of
billing systems that had been implemented over the
years. Why was that? What were the lessons learned
previously? What can we do differently?

4.3 Procedure/Policies/
Perspective

What is the organisations procedure for
approaching staff? How much access will the
developers have to the people who will be using the
system? If management provide a ‘superuser’, how
much do they know outside their own job description?

What are the policies for implementation? How
difficult will it be for people to access the system?
What training is envisaged, and to who?

The project needs to be put in perspective of the
wider organisational requirements. What other
projects are underway? What is the organisation’s
focus? How important is the project and how critical
is the timeline?

4.4 People/Politics
A careful study of previous work, and conversations

with key champions of the project may alert the
developers to the people and political issues that may
surface with the proposed project. It is a good idea to
get the users involved early, to discuss any barriers
that might be on the horizon. When we need to change
processes and systems, there is much discussion
about difficult people, and blockers to any change –
these people need to be assessed early to determine
whether they have genuine concerns, and if they do, to
work through them.

The advantages with them being involved throughout
the whole project include:

♦ They may have experience from a wide range of
development projects which enables them to add to
discussions about issues that other users may have
with the product.

♦ They can highlight issues such as time to do
tasks and difficulty of operating.

♦ They can provide valuable feedback for corrective
action throughout development before the software goes
live.

♦ They can assist testers in the development of
UAT material.

♦ They can excite other users to want to use the
product.

♦ As they have working knowledge of the product,
they can troubleshoot minor problems if required during
implementation.

♦ They can help create full resources (a
programmers nightmare task), so others can refer to
them after the development is over.

4.5 Process
A good system helps streamline a business

process. Be clear about what the process is, and what
the requirements are in terms of input and output. Look
at exceptions to the process - maybe in peak periods
it is done differently. If the new system has not allowed
for that, it may that it is unable to be used in that time,
and the old system will have to remain and be
maintained.

When documenting individual processes, look at
where they fit into the overall end-to-end process. This
will give an indication of how seamless the integration
and implementation of the new system will be.

9 09 09 09 09 0

5. CONCLUSION
Project development has been happening in other

industries for centuries. Tall buildings, ships and space
rockets are all examples of projects that have been
completed. These disciplines have all gained
experience in dealing with the human factor in their
projects, and while not always successful, they are a
long way towards getting it right.

Although analysing the human factor in software
development may not be considered new or novel, the
illustrative examples used in this paper have
demonstrated that there are still recent situations
within the IT industry where we are not getting it right,
and therefore it is a subject which should continue to
be explored and reiterated. If the users are not
consulted or involved throughout the software
development process, the likelihood of the software
getting used to its potential is greatly diminished.

The good news is that the software development
industry does not need to go through hundreds of years
of learning to get it right. We are experts in the
technology: we need to look at other disciplines for
the pieces we are not experts in. These people are all
around us, but because they are not IT professionals,
it is easy to overlook them. You do not have to know
how to write the software to manage a team of people
or develop processes for a new system. In fact, it may
be an advantage not to. Our process people need to
be experts in people, rather than systems.

By ensuring that our preparation is sound, we can
start to make the significant gains required, so our
industry as a whole can come of age.

REFERENCES
Fennie & Mehl, 2003. Website. Accessed 10.3.03.

http://www.fm-arch.com/Firm/design.htm
Jones, C. 1994. “Assessment and Control of Software

Risks”. Englewood Cliffs, N.J.: Yourdon Press
King, J. 1997. “IS reins in runaway projects:users fight

failures with better management.” Accessed 10
March 2003. http://www.computerworld.com/
news/1997/story/0,11280,14265,00.html

KPMG. 1995. “Runaway Projects — Causes and
Effects”, Software World, vol. 26, no. 3.

Krill, P. 2002. “CTO Forum: Taking programming to
the extreme”. Accessed 25 February 2003 http:/
/www.infoworld.com/articles/hn/xml/02/04/10/
020410hnctoxp.xml

McConnell, S. 1999. “After the Gold Rush: Creating a
True Profession of Software Engineering (Best
Practices)”. Microsoft Press.

Turcotte, J. (1997) Follow-Up Report on the Florida
Department of Transportation’s Performance In
Controlling Cost Overruns When Building Roads
and Bridges. Accessed 10 March 2003. http://
www.oppaga.state.fl.us/reports/pdf/9722rpt.pdf

