
9 19 19 19 19 1

Fu
ll

pa
pe

r i
n

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

, N
ew

 Z
ea

la
nd

, J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz

the development of a DTD or schema is done
after a document instance has been marked up.
An XML document is a data structure. This paper
proposes a methodology for XML mark-up that
begins with data analysis by using a type of
structure diagram (an elm tree diagram) then
describes the data structure and content using
Relax NC (an easier to use alternative to DTD or
XML Schema) and finally does the mark-up of
document instances. The instruction
effectiveness and the efficiency of the different
approaches are compared for two occurrences
of a 3rd year degree paper.

Keywords
elm tree diagram, Relax NG, XML Schema,

XML data structures.

1. INTRODUCTION
Gaven (2002) is desperately seeking a set of

simplified best practices and modelling ideas for
XML data structures. Mable (2002) is looking for
a DTD and Schema editor akin to an ER tool
which would allow a developer to build XML
schemas. I teach our students about XML. The
students mark up a course descriptor as an XML
document, create a DTD and schema, and write
xsl code that reproduces the original document;
I am often surprised at the range of different
solutions, some are definitely better than others.
The cries from the students are “Where do I start?
What am I trying to do?” They too would like a

set of best practices and modelling ideas for XML data
structures.

The problems:

♦ How best to teach XML markup?

♦ What are the recognised best practices?

♦ Is there a suitable methodology for creating
XML data structures?

RelaxNC (Cowan & Murata, 2001) appears to be a
large part of the answer to all of these problems.
RelaxNC is a human-friendly language for describing
an XML schema (Fitzgerald, 2002). It is possible to
“think” in RelaxNC and to build the schema for a
document before doing the markup. While working
through some examples I found myself sketching
structure diagrams before writing the RelaxNC. Such
a structure diagram approach has been developed for
modelling SGML structure and can equally be applied
to the representation of XML structures. Elm (enables
lucid models) tree diagrams are a formal structure
diagram approach to modelling document structure and
content (Maler & el Andaloussi, 1996).

A summer school occurrence of our client-side
programming paper was an opportunity to try a different
approach to the teaching of XML. This time the
assignment was to create the elm tree diagram for a
course outline, then the RelaxNC schema before

RelaxNG with XML Data Structures
Dave Kennedy

Christchurch Polytechnic Institute of Technology
Christchurch, NZ

kennedyd@cpit.ac.nz

ABSTRACT
XML mark-up is used in a wide range of applications and in particular for data transfer via the Internet.

XML textbooks and web-based tutorials typically introduce XML mark-up by the use of examples and
the rules for well-formed XML, e.g. XML Tutorial. According to this popular presentation at W3schools.com

9 29 29 29 29 2

marking up a particular instance. The xsl section was
unchanged i.e. write xsl to recreate the original
document. The results were most encouraging. The
students learnt the techniques more quickly, produced
better xml structures and consequently wrote more
efficient xsl code.

2. BEST PRACTICE AND
MODELLING IDEAS

Data modelling is an art as much as a science
and building XML data structures is no exception. It is
possible to produce a wide range of different XML mark-
up for the one document. The question is not only
what is good XML mark-up but also how do you do
this mark-up. The following 9 rules describe XML mark-
up best practices and a methodology for the analysis
and design of XML data structures.

2.1 Do the data analysis first
Many introductory texts introduce XML by working

through a document and marking up the content using
the XML rules for well-formed XML and applying
appropriate semantic tags. This approach presents
XML mark up as another form of HTML i.e. simply
adding tags to a document.

XML is a mark-up for content. An XML document
is a data structure and in this sense all XML documents
are data-centric even if some of the data is a paragraph
rather than a discrete number or word. Accordingly it
makes sense to do some data analysis before rushing
in and marking up the content. As St Laurent (2002)
notes “The successful application of XML requires data
modelling experience”. However XML mark-up is more
than just data modelling. It is a mark-up for both content
and structure (St Laurent, 2002). To do this you have
to separate the structure from the content (Patrizio,
2002; St Laurent, 1998).

How best to do this analysis? (What are the rules?
How do you model an XML structure? What tools are
available?)

If you mark-up a single sample document and then
create the corresponding DTD the incidental structure
of the XML document largely determines the structure
of the related schema or DTD and this has a major
influence on the subsequent processing code. Given
an XML instance, tools such as XMLSpy can create
the corresponding DTD or XML Schema. i.e. the mark-
up determines the schema. From my experience of
marking up documents and from teaching students
XML technologies I would contend that it is better to
create the schema first and then do the mark-up of
documents.

Although XML is touted as easily human- readable,
and indeed this is one of the w3c goals for XML, a
more important goal is to make it easily machine-
readable i.e. easy to write programs that will read and
manipulate it e.g. xsl code (Baker, 2001, w3C
Recommendation, 2000). Baker (2001) makes the
point that “XML is for machines not people”. In contrast
to the human readable goal the W3 Communications
Team (2001) state that “XML is text, but it is not meant
to be read”.

XML is about marking up the data. This implies
that data analysis would be a useful thing to do first.
Resist the temptation to simply start at the top of the
document and mark up the data as you come to it
(Muench, 2002). Instead

a) identify the components
b) classify the components into logical groups
(Maler & el Andaloussi, 1996, p. 30; XML Patterns).
However, as noted above, the data analysis for XML

is more than just about identifying the components. It
is also about defining the structures – how many times
can this element occur?, is it optional?, how are
elements nested?, is order important?

St Laurent (2002) makes the point that this is not
your usual data analysis – “it is about using mark-up
to identify rather than constrain – about thinking how
best to represent the information using XML – it is
more about painting on the structure rather than
breaking the data into strictly pre-defined pieces”.

Figure 1 shows the proposed methodology.

2.2 Code only the data
Leave any presentation elements for the style

sheets. XML is all about separating the data from the
presentation (St Laurent, 1998; Morrison et al, 2000,
p. 13; Hoenisch, 2001).

“In well designed XML applications the mark-up
says nothing about how the document should be
displayed.” (Harold & Means, 2001, p. 4).

For example:
yield =”60 bars”
and not
yield=”Recipe yields 60 bars (1 per
serving)”
and not
 <title>Anise-Almond Biscotti

</title>

9 39 39 39 39 3

The XML should not be identifying bold or italics or
the font size but rather why this data may sometimes
be output in bold or in a large font.

2.3 Use collection elements
If an element can appear multiple times at the

same level then create a collection element for them
(XML Patterns; Maler & el Andaloussi, 1996, p. 102;
Daconta, 2001).

e.g. <ingredients>
<ingredient>margarine</ingredient>
<ingredient>flour</ingredient>
...
</ingredients>

This makes the XML more easily human-readable
but more importantly more machine-readable as each
collection can be processed with a loop instruction
(e.g. xsl:for-each).

2.4 Use a group or block
element to control the sequence
of elements and occurrences of

elements or groups of elements.
(Ray, 2001, p. 59; Mahler & el Andaloussi, 1996, p.

102; Jelliffe, 1998, p. 1-59; Daconta, 2001; XML
Patterns)

e.g. <recipe>
<ingredients>
 ...
</ingredients>
<steps>
 ...
</steps>

 </recipe>
XML mark-up is a tree structure but you don’t want

a tall tree or a wide hedge, it’s best to aim for a wide,
bushy shrub. (Ray, 2001, p. 171)

2.5 The best way to represent
multi-valued data is via sub-
elements.

The starting point for data analysis is identifying
the components and their attributes. Multi-valued
attributes are represented by a collection element
(Daconta, 2001; XML Patterns).

Elm tree diagram

Relax NC Schema

XML markup

Figure 1. An XML mark-up methodology.

9 49 49 49 49 4

e.g. <book>
<title>XML in a Nutshell</title>
<authors>

<author>E R Harold</
author>

<author>W S Means</
author>

</authors>
</book>

2.6 Avoid “mixed” content
Mixed content means an element that contains

both elements and text.
e.g. <name>Dave <surname>Kennedy</
surname></name>
The problem with mixed content is that the

corresponding schema is too general to be any use in
validating a document. Good schemas define the
structure precisely and can be used to enforce it
(Muench, 2002; Morrison et al., 2000, p. 48).

It is better to use
<name>
 <firstName>Dave</firstName>
 <surname>Kennedy</surname>
</name>

2.7 Use meaningful names and a
standard case format

Meaningful names make the document more
human-readable especially if it is displayed by a
program such as Internet Explorer. It also makes good
programming sense, provides internal documentation,
and makes de-bugging easier. XML tags are case-
sensitive, it makes life much easier if you use a
standard case format e.g. camelCase (Hoenisch, 2001)
or lowercase only (Ray, 2001, p. 60) or dot notation
(Carlson, 2001, pg.108).

2.8 Use attributes and elements
as appropriate

Deciding whether to use XML attributes or elements
is not as straightforward as it appears. Because
elements are more familiar to people who know html
and because you have to learn about elements before
you can use an attribute, but not vice versa, XML
structures tend to be element heavy (Daconta, 2001).
But there are people who favour an attribute-heavy
approach (Muench, 2002). An attribute-heavy data
structure is not so human-friendly but it is more
machine-readable (Muench, 2002).

This opens the debate on elements verses
attributes. There appears to be much conflicting advice
on this (St Laurent, 2002; Muench, 2002; XML

Attributes; Harold & Means, 2001, p. 16). It is possible
to write XML which is all elements and XML for the
same document which is predominately attributes.

Ray (2001, p. 61), St Laurent (2002), and also
Daconta (2001) advise that it is best to use elements
for the data and attributes to hold the meta-data for an
element. Jelliffe (1998, p. 1-96) uses a noun and
adjective analogy. If it is like a noun use an element, if
it is like an adjective use an attribute. Brandin (2003)
argues that attributes should only be used to provide
information about data elements in their scope.

 E.g. <ingredient meat=”N”
aisle=”baking”>flour</ingredient>
 The attribute-heavy approach appears to come from

a database, data integrity, and data transfer viewpoint.
It is also a consequence of the limited data typing
available when using a DTD (Morrison et al., 2000, pp.
47, 48).

It seems that the approach you take depends on
the application (Harold & Means, 2001, p. 16). For
data transfer it may well be that the more rigidly the
structure is defined the better and an attribute-heavy
approach with strict data typing is appropriate
(Muench, 2002) but if you need the flexibility and
extensibility that XML can provide, then an element-
heavy structure with minimal data typing is more
appropriate (Harold & Means, 2001, p. 16; St Laurent,
2002).

2.9 Recognise that defining the
schema is an iterative
process.

An XML structure is a data structure. Database
analysis is an iterative process – often it is not until
data is inserted into the tables that design flaws are
exposed – and so the design is changed. Sometimes
it is not until an application is written that design
limitations are realised – and again the design is
changed. So it is with XML (Jelliffe, 1998, p. 1-59). As
it is with data base design – the more experience you
have the more you are aware of downstream
implications of your design; on data redundancy, on
ease of programming, on performance – so it is with
XML design. Baker (2001) sums it up nicely, “Think of
the poor sap who has to do the programming”. This is
a different consideration from the St Laurent (2002)
maxim “Optimising mark-up for processing is always
premature”. St Laurent is more concerned with
constructing an XML structure that restricts possible
variations only because it makes life easier for the
programmers.

9 59 59 59 59 5

3. ELM TREE DIAGRAM
With the above rules in mind a useful starting point

for data analysis is an elm tree diagram (Maler & el
Andaloussi, 1996).

Example: Assume we have a number of recipes
similar in format to the one below.

Recipe Number: rec143
Anise-Almond Biscotti
Country of origin: Italy
Recipe yields 60 bars (1 per

serving)
Calories per serving: 41

List of Ingredients

♦ 4 tablespoons margarine (meat: no,
aisle: dairy)

♦ 3/4 cup sugar (meat: no, aisle:
baking)

♦ 4 eggs (meat: no, aisle: dairy)
♦ 2 1/2 cups all-purpose flour (meat:
no, aisle: baking)

♦ 2 teaspoons crushed anise seeds
(meat: no, aisle: spices)

♦ 1 1/2 teaspoons baking powder (meat:
no, aisle: baking)

♦ 1/4 teaspoon salt (meat: no,
aisle: spices)

♦ 1/3 cup whole blanched almonds
(meat: no, aisle: fruitnuts)

Steps

♦ In a medium-size bowl, beat
margarine, sugar, and eggs until
smooth.

♦ Mix in combined flour, anise seeds,
baking powder, and salt.

♦ Mix in almonds.

♦ Shape dough on greased cookie sheets
into 4 slightly flattened rolls, 1
1/2 inches in diameter.

♦ Bake at 350 degrees until lightly
browned, about 20 minutes.

♦ Let stand on wire rack until cool
enough to handle.

♦ Cut bars into 1/2-inch slices.

♦ Arrange slices, cut sides down, on
ungreased cookie sheets.

♦ Bake biscotti at 350 degrees until
toasted on the bottom, 7 to 10 minutes.

♦ Turn and bake until biscotti are
golden on other side and feel almost
dry, 7 to 10 minutes.

♦ Cool on wire racks.

recipe

ingredients steps

ingredient step quantity
meat
aisle

+ +

recipeNo
title
country?
yield
calories

stepNo
duration

Figure 2. An elm tree diagram for the recipe example

9 69 69 69 69 6

The main components are ingredients and steps
and some meta-data about the recipe. Ingredients is
a collection of individual ingredient components and
steps is a collection of individual step components.

Assuming we may not always know the country of
origin we can model this collection of recipes as shown
in figure 2. Elements are represented by a rectangle:
associated attributes are written alongside. The
occurrence indicators are the same as for DTD’s.

4. RELAX NC
Relax NC is a human-friendly schema language

(Fitzgerald, 2002). “A Relax NC schema specifies a
pattern for the structure and content of an XML
document” (Cowan, Clark, Murata, 2001). There is a
java utility, Trang, that will convert the compact form
to a machine-friendly xml schema or to the w3 XML
schema standard if required. Another java utility, Jing,
can be used to validate an XML document against the
corresponding Relax NC schema (Fitzgerald, 2002).

Relax NC is based on patterns, it is easy to learn,
treats elements and attributes in a similar way and
can define groups, collections, occurrences and data
types more simply than using a DTD or XML Schema

 attribute country {text}?,
 attribute yield {text},
 attribute calories {xsd:positiveInteger}

(RelaxNC is based on patterns. I use a capital letter to start the name of a pattern.)
(RelaxNC supports XML Schema datatypes by default i.e. it “knows” about xsd:positiveInteger).

Ingredients = element ingredients {Ingredient+}
Ingredient = element ingredient {

quantity {text},
attribute meat { “Y”|”N” },
attribute aisle {text},
text
 }

(Cowan et al, 2001; Fitzgerald, 2002). “Relax NG is
simply better than either W3C XML Schemas or DTDs
in nearly every way” (Mertz, 2003, p.1).

It is possible to “think” in RELAX NC and to build
the XML structure before marking up a document
rather than after. The data analysis could be done
using Relax NC and not constructing an elm tree
diagram. However I would recommend building the
elm tree diagram first as it provides a better visual
representation of the data structure and it is easy to
convert an elm tree diagram into the corresponding
Relax NC schema.

E.g. for the recipe example.
start = Recipes
Recipes = element recipes { Recipe+}
Recipe = element recipe
{RecipeAttributes, Ingredients,
Steps}
RecipeAttributes = attribute recipeNo
{xsd:ID},

 attribute title
{text},

Steps = element steps {Step+}
Step = element step {

attribute stepNo { xsd:positiveInteger },
attribute duration {text}?,
text
}

The corresponding XML for the instance above is
shown is Figure 3.

9 79 79 79 79 7

<?xml version=”1.0"?>
<recipes>
<recipe recipeNo=”rec143"
 title=”Anise-Almond Biscotti”
 country=”Italy”
 yield=”60 bars”
 calories=”41">
 <ingredients>
 <ingredient quantity=”4 tablespoons” meat=”N” aisle=”dairy”>margarine</
ingredient>
 <ingredient quantity=”3/4 cup” meat=”N” aisle=”baking”>sugar</
ingredient>
 <ingredient quantity=”4" meat=”N” aisle=”dairy”>eggs</ingredient>
 <ingredient quantity=”2 1/2 cups” meat=”N” aisle=”baking”>all-purpose
flour</ingredient>
 <ingredient quantity=”2 teaspoons” meat=”N” aisle=”spices”>crushed
anise seeds</ingredient>
 <ingredient quantity=”1 1/2 teaspoons” meat=”N” aisle=”baking”>baking
powder</ingredient>
 <ingredient quantity=”1/4 teaspoon” meat=”N” aisle=”spices”>salt</
ingredient>
 <ingredient quantity=”1/3 cup” meat=”N” aisle=”fruitnuts”>whole blanched
almonds</ingredient>
 </ingredients>

 <steps>
 <step stepNo=”1">In a medium-size bowl, beat margarine, sugar, and
eggs until smooth.</step>
 <step stepNo=”2">Mix in combined flour, anise seeds, baking powder,
and salt.</step>
 <step stepNo=”3">Mix in almonds.</step>
 <step stepNo=”4">Shape dough on greased cookie sheets into 4 slightly
flattened rolls, 1 1/2 inches in diameter.</step>
 <step stepNo=”5" duration=”about 20mins”>Bake at 350 degrees until
lightly browned.</step>
 <step stepNo=”6">Let stand on wire rack until cool enough to handle.</
step>
 <step stepNo=”7">Cut bars into 1/2-inch slices.</step>
 <step stepNo=”8">Arrange slices, cut sides down, on ungreased cookie
sheets</step>
 <step stepNo=”9" duration=”7 to 10 minutes”>Bake biscotti at 350
degrees until toasted on the bottom.</step>
 <step stepNo=”10" duration=”7 to 10 minutes”>Turn and bake until
biscotti are golden on other side and feel almost dry.</step>
 <step stepNo=”11">Cool on wire racks.</step>
 </steps>
</recipe>
</recipes>

Figure 3: XML for recipe example.

9 89 89 89 89 8

5. SUMMARY OF STRUCTURE
The art of XML design can be summarised as:
A Identify the components and their attributes.

The listing of components may or may not follow the
structure of the original document. It is the data and
the data structures that are important.

B Identify the structure. Build a shrub structure.
Identify groups of components and look for collections.
Often there will be a header group containing meta-
data (XML Patterns).

 C Model the structure. Build an elm tree diagram
then use this to write the schema using RELAX NC.

6. DISCUSSION – A TALE OF
TWO CLASSES

A semester 2, 2002 class was taught XML by
following the early chapters of “Learning XML” (Ray,
2001). Students were taught mark-up concepts and
the rules for well-formed documents. There was some
discussion of elements and attributes and examples
of collections and groups. The first stage of their
assignment was to mark-up a course outline. There
was a wide range of solutions. All were well-formed
but some were better than others. Most students used
only elements. Many included presentation aspects,
e.g. footnotes and section headings. They then
produced a corresponding DTD. The fact that tools
such as XMLSpy can do this automatically shows that
it is not a difficult task. It is simply a reflection of the
XML mark-up used in the document. The third stage
was to write xsl that would extract the data from the
XML document and reproduce the original course
outline in XHTML format (These students have previous
programming experience and are familiar with html). It
was when writing the xsl code that they realised that
changing the structure of the XML document could
have a major influence on the ease of subsequent
processing. Many students revisited their XML
structure.

For the January 2003 summer school class, the
teaching approach used was as outlined in this paper.
From the teaching perspective it seemed a more logical
way to proceed and the students appeared to better
understand the concepts and the issues. They all
produced “good” XML structures and efficient xsl
stylesheets.

Students were asked to record the time taken for
the stages of the assignment and to comment on the
process. A comparison of the times taken to complete
equivalent components suggests that the differences
are significant at the 95% confidence level. However

this only adds to the anecdotal evidence that using an
elm tree diagram and Relax NC is a better methodology
for XML mark-up. The two classes were self-selected
and not a random selection from the same student
population.

6.1 Comments from the 2002
class (traditional XML and DTD)

“As I progressed through the assignment, I
found myself modifying my XML.”
“I had to re-design the XML in order to make life
a little bit easier.”
“The task which took the most time was coding
the document in XML. This was hard because I
needed to make decisions about how to
structure the information which were difficult
because I didn’t know what sort of issues we
would be facing later on.”
“I found that while doing the xslt I changed quite
a lot of the structure in the XML.”
“The structure of my XML did not allow me to
use xsl’s looping to maximum effect.”
“I had to change my XML and DTD when I
created the XSLT.”
“Next time I would spend more time on the
design of the XML.”

6.2 Comments from the 2003
class (XML and Relax NG)

“Next time I would spend more time and care on
the elm tree diagram – its importance is obvious
now.”
“Time spent on analysis paid off.”
“The best thing I found was doing the elm tree
diagram.”
“RNC easier and quicker than writing a DTD.”
(from someone who had previously attempted
this paper).
“The elm tree diagram was a vital base for the
rest of the assignment.”

7. CONCLUSIONS
XML mark-up is a mark-up of the data structure of

a document. It makes sense to do the data analysis
first. Elm tree diagrams were developed for the data
analysis of documents and can be used in conjunction
with best practice rules such as identifying collections,
creating groups, using attributes for element meta-
data, and using an xml pattern where appropriate.
Relax NC is not only a more human-friendly schema
language than DTD or XML Schema it is also more
powerful and flexible, e.g. its ability to specify
interleaved elements within a group (Mertz, 2003).
Using the above methodology for teaching XML mark-
up appears to be better from both the teaching and

9 99 99 99 99 9

Table 1. Comparison of time taken to create the XML and corresponding DTD or Relax NC Schema

Table 2. Comparison of time taken to write the xsl code

Table 3. Comparison of lines of xsl code

the student point of view. The students appreciated
the more directed approach and found elm tree
diagrams and Relax NC easy to learn and use which
was reflected in the time they spent on the assignment
and in the quality of the XML mark-up and code they
produced.

REFERENCES
Baker M. (2001). “Designing XML Tagging languages”.

XML Journal Vol 2, 8 pgs 38-42.
Brandin C (2003) “Maximising the Usefulness of XML”.

XML Journal Vol 3, 12 pgs 16-19.
Carlson D. (2001) “Modelling XML Applications with UML”

Addison-Wesley.

100100100100100

“Categorized XML Patterns” Accessed September
2002 www.xmlpatterns.com/
categoryAllPatterns.shtml

Cowan J & Murata M. (2001) “Relax NG Specification:
Committee Specification 3 December 2001”
Accessed February 2003 http://www.oasis-
open.org/committees/relax-ng/spec.html

Cowan J., Clark J., Murata M. (2001) “RELAX NG
Tutorial Compact Syntax Committee
Specification 3 December 2001” Accessed
September 2002 http://home.ccil.org/~cowan/
XML/compact-tutorial-20011203.html

Daconta M. C. (2001). “Are Elements and Attributes
Interchangeable?”. XML Journal Vol 2, 7 pgs
42-44.

“Extensible Markup Language (XML) 1.0 (Second
Edition) W3C Recommendation 6 October
2000”. Accessed May 2001. <http://
www.w3.org/TR/REC-xml>

Fitzgerald M. (2002) “RELAX NG’s Compact Syntax”.
Accessed September 2002: http://
www.xml . com/ lp t / a /2002 /06 /19 / rng -
compact.html

Harold E. R. & Means W. S. (2001) “XML in Nutshell”.
O’Reilly

Hoenisch S. (2001). “Structuring Documents with
XML”. XML Journal Vol 2, 6 pgs 40-43.

Jelliffe R. (1998) “The XML and SGML Cookbook:
recipes for structured information”. Prentice Hall
PTR.

Maler E. & el Andaloussi J. (1996) “Developing SGML
DTDs: from Text to Model to Markup”. Prentice
Hall PTR.

Mertz D. (2003) “XML Matters: Kicking Back with
RELAX NG Part 1” Accessed March 2003

http://www-106.ibm.com/developerworks/xml/library/x-
matters25.html?dwzone=xml

Morrison M. et al (2000) “XML Unleashed”. Sams.
Muench S. (2002). “The Attribute/Text Conundrum”.

Accessed November, 2002:
www.xmleverywhere.com/newsletters/
20000525.htm

Patrizio A. (2002) “XML returns to its authoring roots”.
XML & Web Services, vol 3, 4.

Ray E. T. (2001) “Learning XML 1st edition”. O’Reilly.
“RNC Distilled” (2002). Accessed October 2002: http:/

/xmldistilled.com/tutorials/free/slides/01.html
St Laurent S. (1998) “Why XML?”. Accessed Novmber

2002. <http://www.simonstl.com/aricles/
whyxml.htm>

St Laurent S. (2002) “An ascetic view of XML best
practices”. Accessed November 2002. <http://
monasticxml.org/index.html>

W3C Communications Team (2001). “XML in 10 points”
Accessed November 2002 www.w3.org/XML/
1999/XML-in-10-points.html.en

“XML Attributes”. Accessed June 2000:
www.w3schools.com/xml/xml_attributes.asp

“XML Tutorial” Accessed March 2003
www.w3schools.com/xml/default.asp

101101101101101

Element x is required x

x

x

x

x

Element x is optional

Element x has the content model …

x

a

?

*

+

Element x is optional and repeatable

Element x is required and repeatable

b

Element x contains element a followed
by element b

x

a b

Element x contains either element a
or element b

APPENDIX Elm Tree Diagram Notation Summary
Figure 4. Elm tree diagram notation summary.

102102102102102

Figure 5. elm tree diagram summary continued.

x
optional attribute
required attribute
attribute with token default=(a|b|c)
attribute with string default (“d”)

Sequential group is
optional, optional-
repeatable, or required-
repeatable

? or + or *

Either-or group is
optional, optional-
repeatable, or required-
repeatable

? or + or *

a

b

Element a and element
b must appear, and can
be in any order

a

b

Element a and element b can
appear repeatedly or not at
all, in any order (+ means at
least one element is
required)

+ or *

