
314

The Joy of X: The design of
an XML system

The two main uses of xml are data exchange and as a central
source that can be extracted and displayed in multiple ways.
This paper describes the design and development of an xml-
based system for course outlines that uses xml for data exchange
and as a central repository. The central repository is constructed
from a number of base xml documents that have been extracted
from various disparate sources. The central repository is used
to produce a range of different outputs in different formats.
The design considerations, for the system, the schema and the
xsl, are discussed.

Keywords
XML Design, XSLT, XSL-FO

 1. INTRODUCTION
1.1 Motivation

The current course outline system (Kennedy &
Lance, 2001) is based on a set of separate MS
Word documents that are maintained by each course
co-ordinator. There is a standard template, produced
by the school administrator each semester, which
contains common paragraphs e.g. sections on rec-
ognition of prior learning, aegrotat applications and
dishonest practices and a table for the course diary
that contains the week numbers and dates.

 Course descriptors are a separate set of MS
Word documents that are maintained independently
of course outlines.

An updated course outline is typically produced
by a series of cut and paste operations from the
existing course outline and the latest course
descriptor. Timetable information is added, staff
details are updated if required, and course diary and
assessment summary details are entered.

There is much redundant data and plenty of scope
for errors.

Web pages that display much of the same con-
tent as course outlines are maintained independently
of this system.

Most of the information that changes from one
semester to the next is contained in the student man-
agement system (A Jade based system named Jas-
per).

1.2 The problems
Although there is a standard template for course

outlines it is often changed from one semester to the
next and each course co-ordinator further modifies
it to suit their requirements.

The data redundancy inherent in multiple inde-
pendent systems creates problems with maintenance
and leads to out-of-date versions. This has been
commented on by monitors.

Course outlines are more narrative-oriented
documents than data-oriented. Each one is similar
in structure but can also be very different in terms of
the number of staff involved, texts and resources,
pre-requisites, outcomes, assessments, and course
diary information.

1.3 An XML Solution
The solution appeared to lie with an XML based

system for the following reasons:
a) XML is a method of mark-up for data – in

particular the data contained in documents.
b) XML has the flexibility to allow for many vari-

ations within a standard document schema i.e. the
number of staff involved, a range of class hours and
times and types of session, a variable number of aims,
outcomes, assessments, texts, and many variations
on the content of the course diary.

Dave Kennedy
Christchurch Polytechnic Institute of Technology

Christchurch, NZ
kennedyd@cpit.ac.nz

315

c) An important aspect of XML design is the
separation of content and presentation (Hoenisch,
2002b; Miller, 2003; Neugebauer, 2003; Ryan,
2002). It should be possible to build a central XML
repository that contains all the course outlines for a
particular semester and use that to publish the data
in many different formats e.g. web page, printed
output, marketing information and other reports such
as textbook lists (Kumar & Langley, 2002; Ponisio
& Rossi, 1999; Souri, 2002). This way all output
would be in sync and up-to-date.

d) XML has become widely used as a data ex-
change format and as a method for extracting data
from disparate sources(Ponisio & Rossi, 1999).

1.4 The Challenge
The challenge was to:
a. extract the base data from a number of dispa-

rate sources and build a master document
b. write xslt programs to produce the required

outputs
c. use ‘best practice’ techniques for the system

design, the schema design, the xslt design
d. at all stages aim to separate the data from the

presentation

1.5 Requirements
The main system requirements were:

Figure 1. The XML System Design.

316

a. Minimise human intervention in the production
of course outlines i.e where there are no changes in
texts, assessments or staff from one semester to the
next the system will automatically produce the course
outlines with updated class timetable and course di-
ary. The assessment schedule may require assess-
ment dates to be adjusted in the light of holidays
and semester breaks.

b. Staffing changes will be made by the Pro-
gramme Leader to a single base document.

c. If changes are made to a course descriptor
(via faculty academic procedures) these will auto-
matically be incorporated.

d. The faculty administrator will use an Excel
spreadsheet to build an annual calendar containing
week number, week beginning dates and term and
semester dates. This information will be linked to
the course outlines.

e. Produce course outlines in printed form and
as a web page.

2. SYSTEM DESIGN
2.1 Initial Design

The basic idea was to extract data from Jasper
etc and build a master repository of XML docu-
ments, one for each course outline. From there xslt
programs would be written to produce the required
outputs. (see fig 1)

This design was based on:
a) a flow of xml documents using xslt to trans-

form one xml document to another (Harold, 2003;
Miller, 2003; Ponisio & Rossi, 1999).

b) The use of RelaxNG as the schema language
(Harold, 2003) to ensure structural completeness.

c) A master repository approach (Kumar &
Langley, 2002; Ryan, 2002)

d) XML design patterns e.g XML Mediator, Di-
rector, Builder (Ponisio & Rossi, 1999; Sun, 2003).

e) Use of xml standards such as vCard, iCalendar
and docBook (Kumar & Langley, 2002).

2.2 The Base Documents
Because the data comes from a number of dif-

ferent sources it was decided to extract from each
source to a base document and then write xslt to
combine the base documents and so produce the

master repository. The base documents were iden-
tified as:
staffMembers (staff details – office,
phone, email)
timetables (day, times, room and
sessionType details for each occur-
rence)
courseDescriptor (hours, aims, pre-
requisites, objectives, assessments
etc)
courseInfo (course controller,
teaching staff, assessment dates, and
session details for all sessions)
calendar (dates for semester, term,
holidays, breaks)
programme (programme details – code,
faculty, school, exam dates, resit
procedures, etc)

The base documents were defined using an ELM
tree diagram. These were then written as RelaxNG
Compact (rnc) schemas and tested using sample
documents constructed from existing course
outlines(Kennedy, 2003).

The vCard standard was used within the
staffMembers base document and docBook
biblioentry tags were used for describing referenced
material(Iannella, 2001; Walsh & Muellner, 1999).
At this stage the use of such standards has no im-
pact on this system but it obviously facilitates data
exchange with systems that use these standards.

A JADE program was written to convert the MS-
Word course descriptors to XML(Lance, 2003).
This could also have been done using OpenOffice
or MS-Office to convert each document to low-
level XML followed by an xslt program to change
this into our courseDescriptor XML(Implementing
the Online Edition of the Chicago Hittite Dictionary,
2002).

XML systems that use the write once – publish
many paradigm are usually publishing static docu-
ments. In this case the course outline documents are
semi-static in that we want to recreate and update
them each semester. Most of the base documents
require little or no change from one semester to the
next. When this system was first developed the time-
table information was extracted from Jasper each
semester and the timetables base document recre-
ated. From 2004 timetable information is no longer
included in course outlines. Without the timetables.xml
document the base documents are relatively static
and the major design problem is to enable the de-
velopment of xslt that can create the master reposi-

317

tory for any given semester (1, 2 or summer school)
and xslt that can generate the required output for a
given course code. The most changeable parts of a
course outline are the assessment dates and the dates
within the course diary. For semester and term
classes the diary is in weeks, for summer school
classes it may be in weeks or days. The courseInfo
base document was specified with a courseDiary
element that had attributes of unit (week or day)
and unitNo. The assessment dates were similarly
specified. As a consequence if the sequence of ses-
sions for a course did not change from one semes-
ter to the next then the base document did not need
to be changed.

The calendar base document is generated by first
creating an equivalent Excel spreadsheet. The
spreadsheet is saved as an xml document and an
xslt program converts this to the calendar base docu-
ment.

 2.3 The Master Repository
A master repository is created each semester that

contains an xml document for each course outline.
It is possible to create a single xml document that
contains all the course outlines in which case some
normalisation (Provost, 2002) is possible e.g. staff
details. However the xslt processing model uses an
in-memory node tree so it is faster to use small source
documents (Bonneau, Kohl, Tennison, & Williams,
2003). Each course outline is fully resolved in terms
of assessment and diary dates, exam date and
breaks.

3. SYSTEM
DEVELOPMENT

The concept of extracting data from the various
sources to each of the base documents has been
proved using sample course outlines. However this
part of the system requires further development to
create a working system. The bulk of the work to
date has been in creating the xslt to:

a) Combine the base documents and build the
master repository.

b) Output a course outline in html format.
c) Output a course outline in xsl-fo format that

can then be rendered as a pdf document.

3.1 The Excel transformation
The standard polytechnic calendar for pro-

gramme, class, term and semester start and finish
dates is organised by week no. i.e. for 2004 week
no 1 starts 29 Dec 2003. The easiest way to create
such a calendar is by using a spreadsheet. The
courseDiary base document was designed with unit
(week or day) and unitNo attributes. The director
program uses an offset parameter (e.g. 29 for se-
mester 2) which when added to the unitNo gives
the weekNo for that diaryLine. The date for that
weekNo is found via a lookup to the calendar.xml
document. This means that the courseDiary base
document does not have to be changed each se-
mester to reflect the new dates.

The calendar created using Excel was saved as
an xml document. This document is low-level xml
with detailed elements and attributes that fully de-
scribe the workbook and spreadsheet e.g. Author,
Created, LastSaved, WindowHeight, as well as at-
tributes such as Style, DataType and Formula for
each cell. A simple rule-based (Kay, 2001) xslt pro-
gram, was required to transform the Excel xml to
the calendar.xml base document. The calendar.xml
document contains a collection of date elements each
with attributes for weekNo, semester, term and
startDate.

3.2 The xslt “Director” program
The director program combines xml structures

and data from the base documents and creates the
master repository document for a given course. The
program has been generalised by the use of
parameters(Bonneau et al., 2003) for programme,
semester, term and an offset. The offset parameter
is added to the week numbers in the course diary to
give an absolute week number which is then used to
lookup the start date for that week. The input docu-
ment is a particular course descriptor.

The documents were processed using saxon, an
open source implementation of xslt (Kay, 2001).
Saxon is a command line program that accepts vari-
ous parameters: most commonly an xml input, a
stylesheet, and an output filename.
E.g. saxon courseDescriptorIS301.xml
combine.xsl thisSemester=”2”
thisOffset=”29” –o
courseOutlineIS301.xml

A series of such commands can be run as a batch
file which enables the pipelining of transformations

318

i.e. the output from one transformation can be used
as the input for a further transformation (Bonneau et
al., 2003). Saxon also has a trace option which is
useful as a debugging aid.

An xsl:variable can be an xml document
 e.g. <xsl:variable name
=”docProgramme” select
=”document(programme.xml)” />

This construct was used to open the base docu-
ments and make them available to the xsl program
which could then extract the data required.

The programme document uses staffid attributes
for programme leader and head of school. The pro-
gram uses this id to lookup the staffMember details
in the staffMembers.xml document using a statement
such as
<xsl:variable name =”thisStaff”
 select =”$docstaffMembers/
staffMembers/
staffMember[@staffid=$thisStaffid]” /
>

(Bonneau et al., 2003)
This statement is indicative of the high-level, func-

tional programming that xslt provides. The appro-
priate xml fragment is retrieved and assigned to the
variable thisStaff.

The director programme is mostly about com-
bining the xml from a number of documents into the
one master document. It uses a number of xsl:copy-
of instructions. This instruction is a “deep” copy i.e.
it copies a node set and all underlying sub-trees to
the output file (Kay, 2001).

3.3 The xslt “Builder” programs
The builder programs that extract the data for a

particular course outline and create an html or xsl:fo
document are extracting the same data so the xsl
code to do this is the same in each program. In line
with the fundamental principle of XML design – the
separation of presentation and content – the “look
and feel” was contained in a separate file. (Harold,
2003; Hoenisch, 2002a; Neugebauer, 2003)

The html builder wraps this code in html tags that
includes a link to a css which handles most of the
presentation aspects. The xsl:fo builder wraps the
extraction code in xsl:fo tags and imports an attribute-
set file. Again the attribute-set file controls the “look
and feel” aspects of the final pdf document.

The builder programs were designed to be a gen-
eral program that would accept a parameter for the
course code and then create the required course
outline document. This parameter was an xml file
that contained rdf and Dublin core elements for the
course outline.

Xslt can be modularised by using separate tem-
plates to process different nodes (Hoobler, 2002).
If these templates are stored in separate files then
they can be imported into other programs as re-
quired. The builder programs were designed to be
highly modular. A separate file was created for the
templates for each section. The main program used
seventeen import statements to bring all the code
together. This makes for much easier debugging and
maintenance and maximises reusability.(Bonneau et
al., 2003)

3.4 Producing Pdf output
A builder program was used to transform the

master xml document into an xsl-fo representation
of a course outline (Neugebauer, 2002; Pawson,
2002). The xsl-fo document is in turn processed by
a java program called FOP (Formatting Objects
Processor) to produce a pdf document (Souri,
2002). The main program sets up the xsl-fo page
masters and page sequence, creates the header and
footer and then uses a for-each loop to process the
various sections of the course outline such as staff
members, handbooks, etc. Each section has its own
template which has been imported into the main pro-
gram. These section templates create the xsl-fo tags
as required and extract the data using the same xsl
instructions as is used in the html builder program.
The presentation aspects are contained in a sepa-
rate file which is referenced by an xsl:use-attribute-
sets instruction (Neugebauer, 2003). It is the xsl-fo
equivalent of a css file. However because xsl-fo is
concerned with more detailed presentation aspects
than is html the attribute-set file is more complex
than the css file. The FOP program is used to pro-
duce a pdf document (see fig 2).

 4. FURTHER WORK
It should be possible to save the course

Descriptor documents in xml format and then use
xslt to create the courseDescriptor base documents.
This would enable a working system for the pro-
duction of course outlines each semester.

319

Additional builder programs can be written to
produce other output e.g. marketing information.

Because of memory constraints it is not possible
to store all the course outlines within a single docu-
ment. If a native XML database was used to store
the master repository documents then reports on all
course outlines would be possible e.g. a list of texts
for a group of courses.

 5. CONCLUSIONS
Today xml is often used for data exchange, to

which it is well suited. However the real power of
xml is seen in systems that build, store and trans-
form documents: documents that have a defined
structure that is also highly flexible and extensible
(Miller, 2003). To allow for such flexibility using a
traditional database design would make for a com-
plex database structure and complex programming.
An xml design for such a system is much more
straightforward as is seen in the design of this sys-
tem which creates a set of course outline xml docu-
ments and displays them in multiple formats.

The use of elm tree diagrams to describe the xml
structures provides a useful diagram from which the
rnc schema can be constructed and is an aid to writing
xsl programs.

Relax NG compact is an easy to use and pow-
erful schema language which can be used to vali-
date the xml documents.

Good xml design is based on:
a) The separation of content from presentation

at all stages e.g. the use of css and attribute-set files.
b) A flow of documents through a series of sim-

ple transformations rather than one complex trans-
formation.

c) Modular xsl programs that use parameters for
ease of writing, debugging, re-use and maintenance.

This system showed that Excel documents saved
in xml format can easily be transformed to a specific
xml format.

This system also demonstrated the use of xsl-fo
and the use of a program such as FOP that can
render xsl-fo documents as pdf or other formats.

Acknowledgemets
Thanks are due to Jason Ions and Stephen Wilson

for the work they did in developing this system as a
BICT programming project (level 7, 45 credits).

Figure 2. using fop to produce pdf output.

