
94

Teaching Novices Programming
with Core Language and Dynamic

Visualisation
Minjie Hu

Tairawhiti Polytechnic
PO Box 640, Gisborne, NZ

minjie@tairawhiti.ac.nz

 This paper attempts to explore a new method to improve the
teaching of computer programming for beginners at tertiary level.
It begins with a change of approach to teaching and then to a
mix of basic theory and practice. It then finds a core language,
which simplified the scope of programme design and
implementation. Dynamic visualisation technique was used as
a supplementary tool in programme logic design, debugging and
testing with desk-check, which helps novices understand their
programme. Finally, the author expects programming educators
to integrate and use these findings throughout the procedure of
teaching programme development, from teaching approach, logic
design, desk-check, implementation, to debugging and testing.

KEYWORDS
Core Language, Dynamic Visualisation, Software Visualisation,
Programming Visualisation, and Algorithm Animation

1. INTRODUCTION
Teaching computer programming is always

thought to be “hard” and a real challenge. Students
feel (Jenkins, 2001) scared and try to avoid pro-
gramming. Even if written in English, programming
is believed to be as difficult to learn as a foreign
language.

Why does it happen to this subject? How do we
teach novices? What do we teach them? When we
were students, how could we have been successful
in programming? What is the way to improve our
teaching?

The following research starts from an analysis of
the current teaching approach on the first program-
ming course for novice uses and later allows a mix
of theory and practice rather than only syntax-free
logical design. The research looks for a suitable first
computer language for novices, which leads to the
discovery of the minimal number statement of a com-
puter language: a core language to teach novice pro-

gramming. Next, the research introduces using visu-
alisation techniques to assist programme logic de-
sign by the use of a simple flowchart tool. The re-
search also finds debugger can be used as a simple
programming visualisation tool to dynamically illus-
trate the execution of running-time code and data.
This helps novices to test their desk-check solutions
again running-time dynamic results. Finally, the inte-
grated use of these findings is highly recommended
to programming educators. It can be used through-
out the whole procedure of teaching programme
development from teaching approach, logic design,
desk-check, implementation, to debugging and test-
ing.

2. TEACHING APPROACH
Successful computer programming requires

knowledge of abstract mathematical thinking and
logical intelligence. It also requires problem-solving
and critical thinking skills (Crews & Zieglger, 1998)
as well as the same skills needed for language, arts
and business (Prasad & Fielden, 2002).

Prasad and Fielden reported teaching program-
ming usually starts off with an introduction to the
program develop life cycle, then moves on to prob-
lem solving and algorithms and desk-check and then
the translation of algorithms to a programming lan-
guage. Finally, it completes with testing and docu-
mentation.

The introductory programming course for the
Diploma in Information Communication Technology
(DipICT) Level 5 at Tairawhiti Polytechnic used to
start with module PD500 (Programming Develop-
ments, which is purely a syntax-free logic program-
ming design), and then would implement the design

95

with VB language at module PP400 (Programming
Principle).

Fincher (1999) summarised four approaches in
teaching programming. The “Syntax-free” approach,
like PD500, is to teach a quite separate notion (or
pseudocode) from the real computer language. The
“Literacy” approach, like module PP400, is based
on a real computer language. The “Problem-solv-
ing” approach is used in conjunction with analysis
and design. It sounds like the next step of previous
two approaches, more like module PP510. The
“Computation as Interaction” approach is for ob-
ject-oriented and GUI programming.

Even some educators (Nelson & Rice, 2000)
like to teach programming in a language-independ-
ent manner, they believe that it is important to let
students execute their programme on computer so
that they can receive feedback on what they have
done. Thus, the introductory course starts in a lan-
guage-independent manner, and then goes on to
implement in real language. Crews (2001) argued
pseudocode approach lacks real-time feedback to
students and requires teacher’s evaluation. Students
have to spend more time on design than implemen-
tation details.

After several years teaching syntax-free program-
ming, I re-considered the way I taught and the way
I learnt two-decade ago. I tried to provide students
with some optional practical workshops to imple-
ment their logic design with minimal syntax in Visual
Basic (VB) language. The debugger is also applied
to dynamically illustrate the execution of running-time
code and data, which is described late in this paper.
Students test their desk-check solution by following
the running-time statement flow step-by-step. It dra-
matically changes the feedback from students. Stu-
dents used to say it’s too hard to understand, too
abstract. Now they find practice lets them under-
stand better, especially loop and selection.

A survey was conducted to DipICT students by
the end of year 2003. The result shows most stu-
dents (90%) like to learn theory and practical to-
gether when they learn programming. Only few stu-
dents (10%) prefer to learn logical design first and
then practice. One response said, “Students would
be able to see the logic behind the paper work when
using VB”. Another response said, “I learned better
by doing practical “hands on” stuff”. However, an-
other respondent was worried that the errors made

in language might confuse the logic design. Thus,
module PP490, a combination of programming
theory and practice is introduced as the first pro-
gramming course for novice this year together with
further changes discussed as follows.

3. CORE TEACHING
LANGUAGE

After the teaching approach is decided, the next
thing is to choose an appropriate computer language
for novices as their first computer language, as this
could affect their learning of another computer lan-
guage.

Microsoft Visual Basic is one of most popular
computer languages for application development and
programming education. But when educators (Nel-
son & Rice, 2000) used VB in their first course,
they found students struggled to divide up their al-
gorithm between various event-driven procedures.
Thus, they had to turn back to using C++ again in
the introductory course, using VB as a follow-on
course. Although VB can be used to implement both
simple and large programs, Raymond and Welch
(2000) reported that it is difficult to see the flow of
execution when designing an even-driven pro-
gramme. They also found the VB environment to be
too complex for novice to use. So, they chose Java
for introductory course. However, other educators
(Knowlton, 2002, Hu, 2003) also discovered that
it is better to teach VB first and then teach C++.

Some educators tried to use a simple language
called mini-language (Crews, 2001) for the novices.
The mini-language such as Logo, Karel and Karel++
only provide only a few basic commands. But, a
novice has to face special symbols and complex rules.
Others use simple language called Kernel language
(Roy and Haridi, 2002), which is modelled on a wide
variety of languages. The kernel language approach
focuses on programming concepts and helps stu-
dents to design abstractions. It is truly language-in-
dependent.

To teach programming practice, we have to use
a real computer language, which is simple and easy
for novices. At Tairawhiti Polytechnic, Visual Basic
5.0 was first introduced to the Certificate in Intro-
ductory Computing (CIC), instead of command-
based DOS version QBasic used in 1999. This is a
free nine-week level-3 course. Most students have

96

a poor academic background and are novices in
terms of programming. I tried not to put any control
tools on VB form but only display results on the
form. Students enjoyed the visual program rather
than command-based interface. It was successful
taught, even to the students who had no program-
ming background or other training, like PD500. In
the following year, the trimmed and pruned light Visual
Basic was introduced to PP400 instead of C++ (Hu,
2003), and then moved on to add certain controls
on window form.

The successful experience of this low-level class
motivated me to consider using a core language for
novice in PP490. Table_1 lists the comparison study
of syntax between pseudocode and other currently
used computer language, such as VB6.0, VB.NET,
C++, and C#. A core language selected from VB
6.0 is the best choice amongst the other languages
to implement pseudocode. The VB 6.0 core lan-
guage runs on a window form application, rather
than a console application. It is not necessary for
novices to put any controls on the form. Therefore,
it is used to simulate the traditional procedure pro-
gramming, rather than event-driven programming,
because it is the only one form-loaded event auto-
matically driven when the programme starts.

There are a number of significant benefits for
novices in using VB 6.0 core language. It is not nec-
essary to declare variables with different data type.

Neither has to convert a variable from one data type
to another. The spelling of a variable name is not
case sensitive. The beginners don’t need to get frus-
trated when seeing Windows Form Designer gen-
erated code by VB.NET and C#. More so, it is
easy to debug, which will be discussed later. The
selected core language filled the gap between “Syn-
tax-free” and “Literacy” approach. It also lets us
focus our teaching on “Problem-solving” and try a
little bit of “Interaction” through input box and win-
dow Form.

A related study has been conducted by Cilliers
and Vogts (2002). They developed a simple pro-
gramming interactive development environment
called Delphi Lite, which was used as non-event-
driven style with console applications for the first
year course. They also found a significant difference
in success rate by using Delphi Lite rather than the
Delphi Enterprise version. However, the VB 6.0
core language runs on a window form application
rather than a console application at command level
user’s interface. Since VB 6.0 core language is part
of VB 6.0, we do not have to develop a new pack-
age like Delphi Lite. The main advantage of Delphi
Lite is to use simple programming environment for
non-event-driven style programming. In contrast, VB
6.0 core language is used for the purpose of simplifing
the programming logic design with minimum syntax,
in order to fill the gap between pseudocode and real

Items Pseudocode VB6.0 VB.NET C++ C#
Declare
variables

No Optional Optional YES YES

Assignment
statement

A = 5 A = 5 A = 5 A = 5; A = 5;

Output
statement

Print “The
Answer is”, A

Print “The Answer
is”, A

Label1.Text =
“The Answer is ”
& A

cout<< “The
Answer is ”<< A
<<endl;

Label1.Text =
“The Answer is ”
+ A. ToString ();

Input
statement

Input A A = InputBox
(“Enter a number”)

A = InputBox
(“Enter a number”)

cout <<”Enetr a
number”<<endl;
cin >> A;

A = int.Parse
(TextBox1.Text)

Selection
statement

If A > 0 Then
A = A + 1
Else
A = A- 1
End If

If A > 0 Then
A = A + 1
Else
A = A- 1
End If

If A > 0 Then
A+ = 1
Else
A - = 1
End If

if (A > 0)
{A ++ ; }
else
{A --; }

if (A > 0)
{A ++ ; }
else
{A --; }

Pre-test
Loops

While A < 10
A = A +1
End While

Do While A < 10
A = A +1
Loop

Do While A < 10
A = A +1
Loop

while (A < 10)
{ A++;}

while (A < 10)
{ A++;}

Post-test
Loops

Repeat
A= A+1
Until A > 10

Do
A = A+1
Loop Until A > 10

Do
A = A+1
Loop Until A > 10

do
{ A++; }
while (A <=10)

do
{ A++; }
while (A <=10)

Table_1 Comparison of Syntax between Pseudocode and Computer Language

97

language. Novices can also implement a traditional
procedure design on the window Form.

4. DYNAMIC
VISUALISATION

While teaching programming, the old-fashioned
teaching style (Mnuk, 2003) is still prevailing. Some
source code fragment is written on the board or
copied on a slide with OHP and a couple of pic-
tures are drawn to illustrate how the programme
works. They said: “A picture is worth thousands of
words”. This is because the human mind is very visu-
ally oriented (Hils, 1992). Pictures are easily learned,
remembered and retrieved. After static visualisation
teaching style of code list, flowchart, diagram, and
pictures, educators introduced dynamic visualisation
fashion in terms of one-way presentations, like mov-
ies, PowerPoint Slides, Flash animations with sound
explanation and music. They also used two-way in-
teractive tools, like executable flowchart, algorithm
animation, programming visualisation and software
visualisation. The following paper will discuss how
to employ the interactive visualisation tool in pro-
gramming teaching.

4.1 Visualisation with Flowchart

4.1.1 Iconic Programming Language
Educators (Calloni, et al. 1997) tried to use icons

and lines to graphically build up programmes instead
of traditional text-based statements for their first year
programming course. They developed an iconic pro-
gramming language named BACCII (Ben A. Calloni
Coding Iconic Interface). But the icons are not ex-
ecutable until they generate programming code of
real computer language such as Pascal and C++.
Recently, Cilliers and Vogts (2002) also use another
iconic-programming tool called B# for their first year
programming course of Delphi. Although B# has a
very limited scope of programming functionality, it is
more helpful than Delphi Lite when faced with the
logical errors.

4.1.2 Tools for Flowchart
Crews and Zieger (1998) reported students

struggled with programming syntax but were in fa-
vour of a visual algorithm design environment using
flowcharts. They found flowchart is easier to be un-
derstood than pseudocode and QBASIC. Some
researchers (Hyrskykari, 1993) did not find any

advantage to the flowchart over programme lists.
Several experiments still support that flowcharts
outperform with complex algorithms.

Furthermore, Crews and Zieger developed a
Flowchart Interpreter (FLINT) System for students
to develop flowcharts using an iconic interface.
FLINT flowcharts are immediately executable. Stu-
dents can get immediate feedback on their logical
design before implementing with a real computer
language. Also, Crews and Murphy (2004) evolved
a Visual Logic Flowchart Simulation Tool. It com-
bines the utility of flowcharts and pseudocode with
computer simulation. Importantly it can be executed
step-by-step in debugging, which provides immedi-
ate and accurate feedback to student. It also presents
variable values observable to allow students to fol-
low the effects of the execution of each statement.
Finally, Visual Logic flowchart generates the latest
Visual Basic .NET code. Figure_1 shows using
Visual Logic to represent a flowchart. It illustrates
the execution of the following chart step-by-step.

4.1.3 Adoption of Flowchart Simulation Tool
The code generated by Visual Logic is only for

VB.NET console window application rather than
for VB 6.0. The features of this flowchart simulation
tool are suitable as a supplement to adapt to the
teaching of flowcharts. The dynamic illustration by
this executable flowchart assists novice to concen-
trate on problem solving and to understand program-
ming logic design. However, to demonstrate the ex-
ecution of real programming code step-by-step, we
need to use another tool found in this research.

4.2 Programming Visualisation by
Debugger

To teach programming, not only we need to teach
how to design programme and write code to proc-
ess data, but also to let students see, test and un-
derstand how the code executes and works with
data.

4.2.1 Taxonomy of Visualisations
Programming visualisation is defined as (Price,

et al. 1993) the use of various techniques to en-
hance the human understanding of computer pro-
grams, while visual programming is the use of “visual”
techniques to specify a programme in the first place.
Algorithm animation (or visualisation) is the visuali-

98

sation of a high-level description of a piece of soft-
ware while the low-level visualisation of code and
data is also defined as a kind of programming visu-
alisation. Software visualisation includes all of these.

Programming visualisation must not be confused
with visual programming. Martin et al. (2002) ar-
gued visual programming means to construct a pro-
gramme visually. This is similar as today we use con-
trols from the toolbox of Visual Basic to build up
user’s interface by drag and drop. On the other hand,
programming visualisation concerns the presentation
of a programme. It is helpful in understanding a pro-
gramme.

4.2.2 Algorithm Animation
It seems almost obvious (Kehoe et al., 1999)

that students could learn faster and more thoroughly
with algorithm animation. The dynamic images pro-
vide a concrete appearance to the abstract notions,
which could be helpful for students to understand
algorithm. Unfortunately, the empirical study reported
disappointing results. Lawrence et al. (1994) hy-
pothesised that students, who created their own test
data sets for the algorithm, could learn better than
those who passively watch the animation.

The earlier algorithm animation focused on show-
ing the results by images at high-level. It is hard to
tell students how the code and data related to pro-
gramme execution at a step-by-step low-level. Many
available algorithm animation systems, such as Ani-
mal, EVEGA, and Polks do not support the visuali-
sation of the source code (Mnuk, 2003). Although
some system like Animated Algorithms supports
visualisation of user-selected code, it is still difficult
in incorporating changes and extensions.

4.2.3 Programming Visualisation
Smith & Webb (2000) conducted an experiment

using a low-level program visualisation tool, called
Bradman, in teaching novice C language program-
ming. It gave concrete empirical evidence that such
a tool is beneficial in assisting novices to learn pro-
gramming. Sangwan et al. (1998) used a system of
programming visualisation for standard C/C++ pro-
grams. Ben-Ari (2001) developed a programming
visualisation tool, called Jeliot 2000, to assist stu-
dents understanding Java source code of algorithm.
However, most of current programming visualisa-
tion systems are designed either for particular com-
puter language, such as C and Java, or only for cer-

Figure_1 Example of Visual Logic Flowchart

99

tain programmes of algorithms. Therefore, Robling
and Freisleben (2001) tried to develop a tool, which
is useful for generic software visualisation called
Animal. It provides a language AnimalScript, which
can be easily translated into other language. Unfor-
tunately, AnimalScript only supports a limited number
of operations.

Since no single visualisation system (Naps, 2002)
is best for all learners, a research group suggested
educators weigh carefully whether to adopt visuali-
sation tools. Their survey indicated that more than a
quarter of respondents never use visualisation tools
for teaching. Most respondents use them once or
twice for demonstrations during lectures. Only three
respondents use them nearly every week. The sur-
vey also addressed the issue of what makes educa-
tors reluctant to use visualisation tools. Most re-
spondents were concerned about the time taken to
develop or to learn the new tool. They worried about
the time needed to find good examples for the course
content and the time to adopt visualisation to teach-
ing approach. Meanwhile, this survey also indicated
the significant benefits of using visualisations. Most
respondents felt that their teaching was more enjoy-

able and had more fun for the students. Visualisa-
tion improved student motivation and leaning.

4.2.4 Find a Debugger for Dynamic
Visualisation

I would rather find out some alternative features
from existing languages than develop or look for a
programming visualisation tool to use at a small poly-
technic. The debugging techniques generally provide
tools to help users analyse how execution flows from
one statement to another, and how variables change
as statements are executed. Particularly, the “Step
Into” debug function in visual programming languages
(such as Microsoft Visual Studio) can be used as a
simple programming visualisation tool to execute
each line of code step-by-step and to display the
current value of variables in another Window. It dy-
namically presents both statement execution and data
value. It is easy to use and perform. It can be used
for a programme with any algorithm rather than only
for that with particular pre-chosen algorithm. Mean-
while, there is no extra cost of selecting and installa-
tion.

With VB6.0 debugger, while each statement is
executed in mode of “Step Into”, it is highlighted

Figure_2 Example of Simple Programming Visualisation by “Step Into” Debug Tool

100

one-by-one which is controlled to pass to the next
one by the user’s command. At the same time, the
running time status of local variables is displayed in
the “Locals Window”. Also, the value of each vari-
able will prompt out when the mouse moves over
the name of each variable. Figure_2 shows an ex-
ample of programming visualisation by “Step Into”
debug tool.

Using “Step Into” with VB6.0 is not only for the
purpose of debugging the programme, but also for
programming visualisation. It is using one stone to
kill two birds. If we say that the selected core lan-
guage approach simplifies the programming scope
and the executable flowchart assists programme logic
design, we could also say the debug tool helps nov-
ices to locate the bugs and understand the pro-
gramme, particularly when novices compare their
desk-check prediction solution again the running-
time execution results.

However, it is not always so easy to perform
programming visualisation by “Step Into” with the
other languages. With Visual C++ debugger, “Step
Into” jumps to display assembly language step-by-
step on Disassembly windows. As well as display-
ing variables in Debug Variable Window, it also turns
to step-by-step display C++ included system file,
such as a header file and other C language code in
different windows. Apparently, there is no benefit in
showing novices low-level computer machine lan-
guage code with every programme at an introduc-
tory course. But novices have to spend their time
working through all the code sentence-by-sentence
and window-by-window.

It does not seem an advantage for novices to use
the current version of Microsoft Visual Studio rather
than using the previous version. With VB.NET and
C# debugger, although “Step Into” works with se-
lected code, it has to firstly start from the code gen-
erated by Windows Form Designer. This may be
many times longer than novice’s programming code.
The more controls on the Form, the more code it
generated. On the other hand, with VB6.0 debugger,
it gets into novice’s code directly. Thus, the debug
tool in VB6.0 is the best choice for a simple pro-
gramming visualisation. This confirms the previous
choice of selecting a simplified core language from
VB6.0.

There is a related study conducted by Cross, et
al. (2002) in teaching novice Java object-oriented

programming. They use debugger of their jGRASP
interactive development environment in their lecture
presentation. They found the debugger could also
be used to explain a correct programme to students
additional to tracking down errors. However, we
use debugger of VB 6.0 not only to visualise the
code and data, but also to test the desk-check so-
lution stepping into running-time results. It is also
easy for novices to step through the simplified core
language code by VB 6.0 debugger rather than to
see extra lines of code and extra windows added
by a certain language.

5. FURTHER TEACHING
MODULES

Since the first introductory programming course
at Tairawhiti Polytechnic has changed from PD500
to PP490, and now it follows the change from
PP400 to PP590. Currently, the easiest and most
productive programming languages are to turn to
Microsoft Visual Studio.NET (Microsoft Corpora-
tion, 2003) for their rapidly building both Window
and Web applications. Once students learn the ba-
sic programming skills from VB6.0, they will switch
to VB.NET by adding controls on window form in
the next module (PP590). Procedure and function
will be also introduced. In the next module (PP510),
array and file will be taught with C#.NET instead of
C++. Application with database (MS SQL Server
and Access), related files, object-oriented program-
ming and Web programming will be introduced in
the second year module (PR610) with VB.NET and/
or C#.NET. However, using both Visual Logic flow-
chart and programming visualisation with debugger
will still be helpful as a highlighted thread through
the whole programming teaching. Table_2 presents
the changes in programming course at Tairawhiti
Polytechnic.

6. SUMMARY
It is hard to teach novice programming. Does

the software visualisation technique make it easy? It
depends on how we use them. A combination of
theory and practice in teaching programming is the
prelude for our teaching with dynamic visualisation.
Selection of a core language makes programming
simple and easy. This is the foundation for another
teaching approach. An executable visualisation flow-
chart helps novices to learn programme logic design

101

Changes Module Contents Language/other
PD500 ♦ Principle of logic design

♦ Sequence, selection and loop
♦ Procedure and function

♦ Pseudocode
♦ Flowchart
♦ Desk check

PP400 ♦ Implement
♦ Test and documentation

♦ VB 6.0

PP510 ♦ Array
♦ Flat file

♦ Visual C++

Before

PR610 ♦ Application with database (MS
Access)

♦ Related files
♦ Object-oriented programming
♦ Script language

♦ VB 6.0,
♦ VBScript/JScript

PP490 ♦ Principle of logic design
♦ Sequence, selection and loop
♦ Implement
♦ Test and documentation

♦ Pseudocode
♦ Flowchart
♦ Desk check
♦ VB 6.0

PP590 ♦ Procedure and function
♦ Implement
♦ Test and documentation

♦ VB.NET

PP510 ♦ Array
♦ Flat file

♦ C#.NET

After

PR610 ♦ Application with database (MS SQL
Server and Access)

♦ Related files
♦ Object-oriented programming
♦ Web programming

♦ VB.NET/C#.NET

Table_2 Changes in programming course at Tairawhiti Polytechnic

and gain immediate feedback. A simple program-
ming visualisation by debugger pushes this research
in teaching novice programming to a climax, as it
shows how each statement flows and affects the
value of data, and also how it provides evidence in
detail as to whether the final results are the same as
the novice’s prediction by desk-check. It helps them
to understand what they have done in programming.
Moreover, these findings are a significant benefit
thread for further programming teaching.

In a word, the findings of the research include
the teaching approach with a mix of theory and prac-
tice: the language usage with a simplified core lan-
guage and the supplement tool with dynamic visu-
alisation by an adoption of executable flowchart and
a debugger. One of them may only change a little of
our teaching. Integrated use of these findings will
affect the whole programming teaching procedure
from logic design, desk-check, implementation to
testing. In the other words, an appropriate mix of
theory and practical application is maintained
throughout teaching rather than “concepts first”
(Ziegler & Crews, 1999, Crews & Murphy, 2004),
teaching with flowchart for the first half of the se-

mester and then move to programming language. For
example, after teaching sequence with a flowchart
and VB 6.0, starting to teach Selection with flow-
chart and VB 6.0 again, and we then teach Loop
with flowchart and VB 6.0, etc. The following fig-
ures (Figure_3 and Figure_4) show the different
teaching order. Finally, we should integrate these
findings into every single programme logic from sim-
ple to complex step-by-step throughout the proce-
dure of teaching programme development in terms
of teaching approach, logic design, desk-check,
implementation, debugging and testing.

An empirical study will be conducted for the se-
ries changes in teaching novice programming, par-
ticularly putting two modules of both PP490 and
PP590 together to compare the teaching with the
other two modules of both PD500 and PP400. In-
dividual comparison is also needed for the following
modules such as PP510 and PR610 to their previ-
ous teaching, in order to find out how the changes
from the starting module affect the other subsequent
programming modules.

102

REFERENCES
Cilliers, C. and Vogts, D. (2002) “Initial experience

of delivery methods in a first year programming
course”, SACLA2002

Crews, T. and Murphy, C. (2004) Programming right
from the start with Visual Basic.NET, Prentice
Hall

Crews, T. (2001) “Using a flowchart simulator in a
introductory programming course”, <http://
www.cstc.org/data/resources/213/Visual.pdf>

Crews, T. and Zieger, U. (1998) “The flowchart
interpreter for introductory programming
courses”, Proceedings of the FIE’98
Conference, pp307-312

Cross II, J., Hendrix, D., Barowski, L. (2002)
“Using the debugger as an integral part of
teaching CS1”, 32nd ASEE/IEEE Frontiers in
Education Conference, 2002 IEEE

Fincher, S. (1999) “What are we doing when we
teach programming?”, 29th ASEE/IEEE
Frontiers in Education Conference, 1999 IEEE

Hils, D. (1992) “A visual programming language for
visualization of science data”, Ph D thesis,
University of Illinois at Urbana-Champaign

Hu, M. (2003) “A case study in teaching adult
students computer programming”, Proceedings
of the NACCQ conference, NZ, pp287-290

Hyrskykari, A. (1993) “Development of program
visualisation system”, The second Czech British
symposium of visual aspects of man-machine
system

Jenkins, T. (2001) “Teaching programming: A journey
from teacher to motivator”, <http://
www.ics.ltsn.ac.uk/pub/conf2001/papers/
Jenkins.htm>

Kehoe, C., Stasko, J. and Taylor, A. (1999)
“Rethinking the evaluation of algorithm

animations as learning aids: An observation
study”, Technical Report GIT-GVU-99-10,
Georgia Institute of Technology

Knowlton, T. (2002) “Using Visual Basic to prepare
learners for C++”, Tech tends - industry
articles, Thomson Course Technology, <http:/
/ w w w . c o u r s e . c o m / t e c h t r e n d s /
VB_041801.cfm>

Lawrence, A., Badre, A., and Stasko, J. (1994)
“Empirically evaluating the use of animation to
teach algorithm”, Technical report GIT-GVU-
94-07, Georgia Institute of Technology

Martin, L., Giesl, A., and Martin, J. (2002)
“Dynamic component program visualization”,
Proceedings of the Ninth Working Conference
on Reverse Engineering (WCRE’02), IEEE

Microsoft Corporation, (2003) “Product Overview
for Visual Basic .NET 2003”, <http://
msdn.microsoft.com/vbasic/productinfo/
overview/default.aspx>

Mnuk, M. (2003) “How helpful are systems for
algorithm visualization?”, Technical Report
TUM-I0303, Technology University Munich
(Technische Universität München), German

Prasad, C. & Fielden, K. (2002) “Introducing
Programming: Abalanced Approach”,
Proceedings of the NACCQ conference, NZ,
pp101-108

Naps, T., Fleischer, R., McNally, M., RoBling, G.,
Hundhausen, C., Rodger, S., Almstrum, V.,
Korhonen, A., Velazquez-Iturbide, J., Dann,
W., and Malmi, L., (2002) “Exploring the role
of visualisation and engagement in computer
science education”, Report of the working
group on “Improving the educational impact
of algorithm visulisation”, Proceedings of the
Annual Joint Conference Integrating

103

Technology into Computer Science Education
(ITiCSE), Denmark

Nelson, M. & Rice, D. (2000) “Introduction to
algorithms and problem solving”, 30th ASEE/
IEEE Frontiers in Education Conference, 2000
IEEE

Price, B., Baecker, R., and Small, I. (1993) “A
principled taxonomy of software visualisation”,
Journal of visual language and computing 4(3):
pp211-266

Raymond, D. & Welch Jr., D. (2000) “Integrating
information technology and programming in a
freshmen computer science course”, 30th

ASEE/IEEE Frontiers in Education
Conference, 2000 IEEE

Robling, G. & Freisleben, B. (2001) “Software
visualisation generation using AnimalScript”,
Informatik-Informatique, 2/2001

Roy, P. and Haridi, S. (2002) “Teaching
programming broadly and deeply: The kernel
language approach”, Workshop on Functional
and Declarative Programming in Education
(FDPE02), 2002, Pittsburgh, USA

Sangwan R., Korsh, J., and LaFollette, P. (1998)
“A system for program visualization in the
classroom”, Proceedings of the twenty-ninth
SIGCSE technical symposium on Computer
science education 1998, pp272-276, ACM
Press

Smith, P. & Webb, G. (2000) “The efficacy of a
low-level program visualisation tool for
teaching programming concepts to novice C
programmers”, Journal of Educational
Computing Research, 22(2): 187-216

Ziegler, U. and Crews, T. (1999) “An integrated
program development tool for teaching and
learning how to program”, ACM SIGCSE
Bulletin, 31(1): 276-280

