
324

Teaching with a Unit Testing
Framework

Dr Mike Lance
School of Computing

Christchurch Polytechnic Institute of Technology
Christchurch, NZ
lancem@cpit.ac

In the NACCQ curriculum desk checking is used to introduce
novice programmers to testing. It is argued that using a unit
testing framework for subsequent teaching of testing is an equally
effective teaching technique.

Keywords
Testing, desk checking, Unit Testing Framework, xUnit.

1. INTRODUCTION
Testing is a major time and cost factor in com-

mercial software development - up to 50% of cost
(Jones 2001). Because a wide range of practices
and skills are required to produce well-rounded
software testers a strong case can be made for wide-
spread integration of testing topics throughout the
whole undergraduate curriculum (Jones 2000).
Many report however that testing is perceived very
negatively by novice programmers (Canna 2001,
Edwards 2003, Jones 2001).

In the NACCQ New Zealand Qualifications in
Information and Communications Technology mod-
ule prescriptions software testing is first addressed
with an emphasis on desk checking. (PP490,
PD500). Subsequent programming modules stipu-
late more general testing skills in learning objective
that are variations of "design test data that will check
that a program works to a specification" (PP590,
PR50n, PR51n, PR60n, PR61n, PR62n, PR65n,
PR72n). There is also a specialized module (QA600)
with a comprehensive coverage of testing.

This paper will argue that the strategy of empha-
sizing a specific testing technique (desk checking)
should be extended by also putting an emphasis in
all programming modules on writing tests with a unit
testing framework (xUnit). There is a strong need to
get novice programmers competent and enthusias-

tic about testing and xUnit provides a good vehicle
for doing this.

2. DESK CHECKING
Introducing novice programmers to testing via

desk checking is a first experience which will leave
a strong and lasting impression. Desk checking is
very effective at teaching novice programmers to
simulate and check the flow of logic in an algorithm.
(The alternative to students proving the soundness
of their own work is letting them handing code to a
tutor and leave it up to the tutor to sort out if the
code passes or not. This is not very empowered
and the novice ends up being dependant on the tu-
tor as tester.) It is a concern is that having learned
desk checking in subsequent programming courses
students will seldom use it unless they are required
to. (In the authors 'other life' as a programmer he
only resorts to desk checking when encountering a
complex logical algorithm, written by somebody
else, in a programming language he don't have ac-
cess to. By preference he will use a debugger and
set watch and break points.) Limited use of desk
checking by advanced students may be an encour-
aging indication that the method effectively teaches
mental simulation of the execution of a programme.
There is a danger that students learn a negative mes-
sage when the first formal software testing method
they meet is not one they will actually use to write
software. It is worthwhile spending the time to make
clear to novice programmers that mentally desk
checking is acceptable in many situations and is the
eventual learning goal.

An emphasis on desk checking can also leave
the impression testing comes after writing code.

325

Before a desk check can be carried out, an algo-
rithm needs to be designed (in pseudocode, prob-
lem description language or a teaching language such
as Pascal). After the algorithm is written down, a
test situation must be defined and expected inputs
and outputs must be determined. Only then can the
algorithm be desk checked. If students repeatedly
have the experience of designing a correct algorithm
and then have going through a time consuming for-
mal process which detects no mistakes they may
learn that desk checking is an unnecessary nuisance
and testing is an annoyance. Setting problems with
subtle logical traps in the requirements or getting stu-
dents to locate subtle bugs in code can help make
the value of desk checking clear. The teacher of
testing needs to also ensure that students continue
to encounter situations where formally testing of non-
trivial logic is required.

The wrong message about testing can also con-
veyed by the format in which students are required
to carry out desk checks. Manual desk checking is
an awkward exercise with rubbing out of incorrect
results, repetitive writing of the same text, and much
taping of pages together. The implicit lesson which
this teaches is that testing is a dated and painful ex-
perience. (Programming students will seldom use a
pencil, rubber and ruler except when doing manual
desk checking.) Enforcing the use of awkward 1960s
technology is also not necessary when it is so easy
to create and record the results of a desk check in a
spreadsheet. Using a spreadsheet for desk check-
ing reduces many of the taxing mechanical compo-
nents of the task and allows the student to concen-
trate on the actual testing.

3. THE JOY OF XUNIT
The biggest problem with desk checking as an

introduction to testing is that it may teach students
that testing is not fun. One important educational
benefit of testing with a unit testing framework ('xUnit'
from now on) is that the associated enthusiastic atti-
tude towards testing. The claim is made that pro-
grammers will become 'test infected' and will 'love
writing tests' and be 'amazed at how much more fun
programming is'. (Beck & Gamma, 1998a) Part of
this positive attitude towards testing is due to ad-
vantages that accrue when any sort of automated
tests exist and help find bugs in code. With a firm
foundation of tests, programmers become 'faster' and

'more productive'. (ibid) A particular reason why
devotes of xUnit have a positive attitude towards
testing is an altered emphasis on the place of testing
within the software development life cycle. The rec-
ommended practice is to write the tests before cod-
ing to define requirements: "Add a test, get it to fail,
write code to pass the test. Remove duplication"
(Beck 2002 p5). Testing after coding will invari-
ably identify failures and is a negative experience for
the programmer. Coding after writing tests in con-
trast is a positive experience because the number of
failing tests decreases and the increasing number of
passing tests confirms that the code is working. This
positive attitude associated with testing is of great
value to educators seeking to teach testing.

'Test driven development' is also claimed to have
a subtle impact on the quality of software design.
Code has to be used by two 'clients': the system
under development and the testing framework. This
attention to developing a testable interface forces
design for reuse. Code produced in this way is said
to be 'reusable', 'less coupled' and 'highly
decoupled'. (Beck & Gamma, 1998a) Once the
break through of using code in two different situa-
tions has been achieved, subsequent reuse is said to
be much easier. The final recommended step in the
test driven development process is 'remove dupli-
cation'. The existence of unit tests and correctly
working code is an 'essential precondition' for
refactoring (Fowler, 1999, p89). The support and
reassurance of working tests allows aggressive
refactoring which can incrementally improve the
design of code. The potential is that introducing xUnit
appropriately into the software development life cycle
can foster other positive changes to the quality of
students' coding practices.

Another advantage of xUnit for the educator is
that it is freely available for down load, is available
in many different programming languages and has
an associated large number of worked examples with
extensive commentary. (eg Beck 2002, Pilgrim
2004). There are also discussion groups and Wikis
where industry based xUnit users enthusiastically
recount their experiences. This amounts to a rich
and readily accessible set of teaching resources for
teaching testing.

326

4. USING XUNIT
Using xUnit for testing involves setting up

"microworlds" with test vocabularies specific to the
application being tested. This is a 'test fixture' of
known objects that can be accessed from every test
method. A setup method gets called by the frame-
work's main 'engine' before each test to create the
objects to be tested. A teardown method is also
called by the framework after each test method and
the code put there should destroy all objects and
generally clean up memory usage. This means that
each test method can be assured a known set of
object of known state. Test methods can then ex-
ercise functionality on these objects and check if
methods are performing appropriately.

As a mature framework should (Foote & Yoder
1997) xUnit 'works out of the box' exposing its serv-
ices with a very compact interface and generally has
a 'gentle learning curve'. A lot of effort has been put
into minimizing the amount of code that needs to be
written to create a test. A student can start using
xUnit to write tests after being given only a few lines
of boiler-plate code. Pilot studies of students using
xUnit in this manner have shown a marked reduc-
tion in code defects (Edwards 2003).

There are also a 'down side' to using xUnit. A
framework by its very nature is complicated. Pow-
erful and subtle object-oriented mechanisms are
used as a matter of course when writing tests with
xUnit. These techniques include extension by sub-
classing from inheritance-based class hierarchies,
conforming to public interfaces, understanding and
using run-time reflection mechanisms, the placement
of code in different methods which will be called
from a coordinating super class Template Method
and generally programming according to the 'Open-
Closed Principle' (Meyers 1988, p25, Martin, 1998)
This level of understanding of object-orientation is
not what was envisaged in the lower level NACCQ
programming modules. To use xUnit requires either
a major step of faith ('it just works') or a sophisti-
cated understanding of object-orientation. Most
tutorials about xUnit take a pragmatic approach and
include lots of applied examples (eg Beck & Gamma
1998b). There are also more detailed articles ex-
plaining how xUnit works (Beck & Gamma 1999)
but these are not promoted as introductory docu-
mentation.

The original vision for xUnit was of a simple and
light weight framework (Beck 1994). Although the
programming language roots of xUnit were in
Smalltalk, the most popular implementation is JUnit
which is written in Java. Alternative implementations
in other programming languages also proliferate.
Because these ports are created as open-source
community projects the standard of implementation
can vary widely. It is telling that Kent Beck, the 'fa-
ther' of xUnit resorts to Python when discussing
xUnit's underlying architecture (Beck 2002, Ch20).
JUnit has accrued many additions over time that
may be off putting to students. There are for exam-
ple 37 variations of the assert statement to choose
from. This complexity has ironically prompted some
to refactor JUnit and produce simpler versions
(Venners et al, 2003).

Even though xUnit may be off putting because of
its apparent complexity, the alternatives are ultimately
much more complex. Manual testing, by entering
assorted values into a graphical interface, is time
consuming, error prone, difficult for a tutor to verify
and downright boring for the student to do. Auto-
mated testing tools which use a record and play-
back mechanism are expensive, difficult to use and
often produce scripts which are 'too britle to be use-
ful' (Kent 1994). Creation of rigorous automated
testing software from scratch requires a reasonably
high level of programming sophistication. Write good
'testware' from scratch is a difficult task for novice
programmers still grappling with basic programming
language syntax. The focus of the student's efforts
can move rapidly from doing testing to writing the
testware and the overall experience will be that testing
is too difficult to be worth the effort.

5. CONCLUSION
It would be a "Good Thing" if novice program-

mers learned early on that testing is an easy process
and not just an annoying 'add-on' to be done after
writing code. Careful teaching of desk checking
begins the educational process by teaching students
how to simulate and verify the execution of an algo-
rithm. Desk checking is a tried and proven tech-
nique. XUnit in contrast is a new and technologi-
cally innovative tool for testing. If novice program-
mers are taught test driven development with xUnit
they may well discover the fun of testing and also
become better programmers.

327

REFERENCES
Beck, K. (1994) Simple Smalltalk Testing: With

Patterns. Smalltalk Report, October 1994,.
Available on line at http://
www.xprogramming.com/testfram.htm

Beck, K. & Gamma, E. (1998a) Test Infected:
Programmers Love Writing Tests, Java Report,
July 1998, Volume 3, Number 7) available on
line at http://members.pingnet.ch/gamma/
junit.htm

Beck, K. & Gamma, E. (1998b) JUnit Cookbook.
Java Report, 1998. Available on line at http://
junit.sourceforge.net/doc/cookbook/
cookbook.htm

Beck, K. & Gamma, E. (1999) JUnit A Cook's Tour.
Java Report, May 1999. Available on line at
http://junit.sourceforge.net/doc/cookstour/
cookstour.htm

Beck, K. (2002) Test Driven Development: By
Example, Addison-Wesley, Boston, MA. Pre-
publication copies available for download from
h t t p : / / g r o u p s . y a h o o . c o m / g r o u p /
testdrivendevelopment.

Canna, J. (2001) Testing, fun? Really? Using unit
and functional tests in the development process.
http://www-106.ibm.com/developerworks/
library/j-test.html

Edwards, S.H.(2003) Teaching software testing:
Automatic grading meets test-first coding. In
Addendum to the 2003 Proceedings of the
Conference on Object-oriented Programming,
Systems, Languages, and Applications. 2003.
Available on line at http://people.cs.vt.edu/
~edwards/pos27-Edwards.pdf

Foote, B. & Yoder, J. (1997) The Selfish Class in
Chapter 25, Pattern Languages of Program
Design 3 edited by Robert Martin, Dirk Riehle,
and Frank Buschmann. Addison-Wesley, 1998

Jones, E L. (2001) Integrating testing into the
curriculum - arsenic in small doses. Proceedings
of the Thirty-second

Jones, E. L. (2000) The SPRAE Framework for
Teaching Software Testing in the
Undergraduate Curriculum. Proceedings of
ADMI 2000(June 1-4, 2000).

Martin, R.C. (1996) The Open-Closed Principle.
C++ Report Available for download from http:/
/www.objectmentor.com/resources/articles/
ocp.pdf

Meyer, B (1988) Object Oriented Software
Construction, Prentice Hall.

Noonan, R. E. & Prosl, H. R. (2002) Unit Testing
Frameworks. Thirty-third SIGCSE Technical
Symposium on Computer Science Education,
(February 2002), pp. 232-236.

Pilgrim. M. (2004) Dive Into Python. Accessed from
http://diveintopython.org/ on 20 May 2004.

Testing Framework http://c2.com/cgi/
wiki?TestingFramework

Venners, B. Gerrans, G. & Sommers, F. (2003) Why
We Refactored Junit: The Story of an Open
Source Endeavor. Available for download from
http://www.artima.com/suiterunner/why.html

