
446

Open Source Software development
as a Complex Adaptive System:

Survival of the fittest?
Dr. Albert van Aardt

Information Systems,
Northland Polytechnic, Whangarei

avanaardt@northland.ac.nz

Proponents of Open Source Software (OSS) claim that the OSS
model results in software which they describe as being of better
quality than “poorly-written commercial software”. As a result,
some organisations consider OSS-developed software as an
alternative to propriety software. The theory of Complex
Adaptive Systems (CAS) indicates that self-adjusting and
evolving systems tend to “live” longer than “top-down”
designed systems. In this paper the question asked is whether
the OSS model is a CAS, and therefore whether or not OSS
software would be more robust (and thus be more cost-effective).
The main finding of this paper is that OSS probably leads to
better quality software, but some precautions need to be taken.

Keywords
Open Source Software; Complexity, Computing research.

1. THE RESEARCH
PROBLEM

Many authors have pointed out that the quality
of software leaves a lot to be desired, and that many
projects are canceled due to poor software. Paulk
et al. (2001:3-4) give the following examples:

1. Seventeen American Department of Defense
software contracts found that the average of twenty
eight-month schedules was missed by twenty
months.

2. Deployment of the B1 bomber was delayed
owing to a software problem.

3. USD 58 billion A12 aircraft program was
canceled partly due to software problems.

One can add the failure of the London Stock
Exchange’s Taurus share settlement system in March
1993 and the failure of the NZ Police INCIS sys-
tem in 1999.

Proponents of the OSS model were quick to
point out that it tends to provide much more robust
and relatively error-free systems than Closed Source

Software (CSS). Raymond (1999) makes the point
that “many eyeballs tame complexity”. By this he
means that, the more people investigate and check
the source code of programs, the more difficult it is
for bugs to slip through. This peer-review attribute
of Open Source is being touted as the solution to
the problem of software failure. Geer et al (2003)
concludes that the lack of peer review in CSS is a
serious security threat.

In this paper this claim is investigated from a dif-
ferent perspective. The theory of Complex Adap-
tive Systems (CAS) is put in context of Open Source
Software (OSS), and some conclusions are reached.
In a nutshell this reduces to the question, “Is OSS a
CAS? and if so, what are the implications for sys-
tems development? The fundamental research ques-
tion to be answered is: Can OSS provide a long
term solution to the problem of poorly written
software?

2. DEPARTURE:
“SOFTWARE”

The term “software” as used in this paper refers
to programs used to process data and produce
meaningful information; in particular, meaningful busi-
ness information. The basic concept is that of “soft-
ware as a tool” - the end product is not the con-
sumption of the software, but producing informa-
tion: a report, a bank statement, a graph to analyze
statistics. The end user, in fact, is focused on the
informational output of the software rather than the
software itself.

This is in contrast with software where the end
user is focused on the software, for example, com-

447

puter games. The user acquires the software for the
sake of the software – and of course, this type of
software has only limited functionality. While soft-
ware as a tool can produce many different outputs,
software as a game is in fact a consumable prod-
uct. Once the consumer has played a game, they
need to buy a new game if they want something dif-
ferent: you cannot play chess with a pacman game.

This is an important distinction; tools versus con-
sumable products, which distinction has not yet been
clearly made in the literature. Manufacturers of CSS
are vigorously attempting sell their products as con-
sumable, throw-away software, hence the cycle of
continuous “upgrades”. Although the process of
development may be the same in both instances, the
end-user’s expectations are quite different. Addi-
tionally, software used for mission-critical business
applications needs to be far more robust than (for
example) games. Miscalculation in a spreadsheet
program has far more serious implications than mis-
calculation in a game.

This paper therefore considers “software” to
mean “mission critical tools”, rather than games: a
distinction surprisingly frequently overlooked by crit-
ics of the OSS model such as Healy (2004)

 3. OPEN SOURCE
SOFTWARE

DEVELOPMENT AS A
COMPLEX ADAPTIVE

SYSTEMS
“Open Source” software is a term used to de-

scribe software that is developed by volunteers and
freely distributed, typically via the Internet. The “Tux”
website describes it as : “Our primary focus is sup-
porting and advocating the development and use of
software and systems whose source code and speci-
fications were openly developed and are freely avail-
able to the public.” (http://www.tux.org/)

The Open Source Initiative has a more detailed
description at http://www.opensource.org/docs/
definition.php - but the main point is the same, i.e.
that OSS is developed and freely shared by con-
tributors from around the world. (The word “free”
refers to “freedom”, as in “free to change the source
code”. It does not mean free as in “no-cost”. OSS
can be sold at whatever price the market will bear).

In a previous paper (“Applying complexity theory
in business information systems”, NACCQ, 2001),
I argued that any Information System displays the
characteristics of a CAS. However, it would be pru-
dent to recall the definition of a CAS at this stage.

According to Dooley (1996) a CAS behaves/
evolves according to three key principles (quoted
verbatim):

 a. Order is emergent as opposed to predeter-
mined

b. A system’s history is irreversible
c. A system’s future is often unpredictable

The basic building blocks of the CAS are
agents. Agents are semi-autonomous units
that seek to maximize some measure of good-
ness by evolving over time. Agents scan their
environment and develop schema represent-
ing interpretive and action rules. These
schema are by definition incomplete and
changing.”
I argued in that paper that an “ordinary” infor-

mation system would be somewhat like a CAS, but
that typically the final objective of an IS is mostly
predetermined. In other words, order is predeter-
mined – the way that an IS is supposed to appear
and behave is first established via the Functional
Specifications, and then the system is developed to
achieve those goals. The classic Systems Develop-
ment Life Cycle (SDLC) and its variants typically
attempt to define what the user requirements are
before any development starts. This is in contrast
with a CAS, where the final outcome is seldom
known.

Holland (1995) showed that, all other factors
being equal, a CAS would survive and grow easier
than a “top-down” system. This, Holland argued,
was owing to the incremental changes and adapta-
tion of a CAS compared to the more rigid structure
of a system designed top-down. Using this perspec-
tive, one can evaluate the OSS model as a CAS:

3.1 “Goodness”
Raymond (1998) and Perens (2001) argue that

the programmer “has an itch to scratch”, indicating
that many programmers write programs purely for
the intellectual enjoyment of solving problems. This
can be interpreted in terms of Maslow’s (1970) Hi-
erarchy of Needs as being “self actualization”. From
this viewpoint, one could argue that the program-

448

mer’s need for self-actualization is the “goodness”
being maximized. The OSS programmer writes code
to satisfy an intellectual need rather than simply to
earn a living, as one would find with CSS program-
mers.

3.2 “Environmental Scanning”
Secondly, the informal manner in which OSS

programmer co-operate via the Internet can be seen
as the “environmental scanning”. The Internet has
no doubt made it very easy for a programmer to
obtain information (for example, a specific piece of
code or a software library) and incorporate that into
their current program.

3.3 “Schema”
In the third place, from this environmental scan-

ning, a programmer or group of programmers es-
tablish a set of rules, basically defining how a project
is going to be developed. For example: the Source
Forge website (http://sourceforge.net/) reports over
77,000 projects and more than 800,000 program-
mers. All of the active projects have a project leader,
but programming work is done in a collaborative
manner, according to certain rules. In other words,
websites such as Source Forge can be seen as a
manifestation of “schema representing interpretive
and action rules”.

3.4 “Unpredictable Future”
Linus Torvalds (1991), the creator of Linux, de-

scribed his project as “This is a program for hack-
ers by a hacker. I’ve enjoyed (sic) doing it, and
somebody might enjoy looking at it and even modi-
fying it for their own needs.” This is taken from his
now-famous email in which he called for participa-
tion. (Newsgroups: comp.os.minix Date: 1991-10-
05) Today Linux has grown to become a serious
operating system, used by many large organizations
– hardly a “program for hackers” anymore.

3.5 “Adaptation”
The continuous, peer-reviewed model of OSS

development, often with robust discussion, can be
seen as the adaptive process taking place. OSS
evolve over time; programmers come and go, but
the project grows. As long as there are program-
mers wanting to improve the tools, the OSS project
stays alive, not to say that the process is always
smooth. There are a number of conflicts raging in

the OSS community on various issues. However,
these can be seen as part of the adaptation process
- democracy in action, in the purest sense of the
word.

The OSS model therefore resembles a CAS much
more closely than the traditional SDLC. A far more
detailed sociological analysis is made by Kuwabara
(2000) in which he comes to a similar conclusion.

4. THE QUALITY OF OSS
There are a number of OSS projects which have

earned a reputation of being robust and relatively
error-free. Examples of these include the Linux op-
erating system, Mozilla (web browser), OpenOffice
(office suite), Apache (web server), MySQL,
PostgreSQL, Firebird (database management sys-
tems), PHP, Perl and Python (scripting languages).
Opinions vary wildly on this question (as can be
expected) and heated debates are raging on the rela-
tive merits of OSS versus commercial software. (For
example, see http://www.microsoft.com/mscorp/
facts/default.asp ; and a response at http://
searchwin2000.techtarget.com/originalContent/
0,289142,sid1_gci948748,00.html) However, the
mere fact that this issue is even being debated of
course indicates that there certainly is a perception
that OSS can compete with CSS. This paper is not
going to even try to document all these arguments.

The SDLC has been criticized by various writ-
ers as being slow and not producing the desired re-
sults. (Watkins, 2003). Alternatives to the classic
SDLC include the so-called “extreme programming”
approach (see http://www.extremeprogramming.org/
): an attempt to reduce the time taken to develop
systems and provide more “user satisfaction”. The
main thrust of these alternatives is to shorten the feed-
back loop between the user and the programmer,
so that functionality can be improved and bugs re-
moved much earlier than in the SDLC model.

Proponents of the OSS model point out that, by
using the Internet, programming bugs are being fixed
quite quickly and that, being open, bugs are found
more quickly than in CSS. Although no independ-
ent statistical figures are available comparing “ap-
ples with apples”, logic indicates that it would make
sense that “many eyeballs tame complexity”. In ad-
dition, one could also argue that the quality of work
from a person programming purely for intellectual
pleasure would be better than that of the program-

449

mer simply doing a job. One may ask, however,
whether this guarantees that the software will always
be better. Once the itch has been scratched, so to
speak, why would the programmer keep on scratch-
ing? The Source Forge website has many thousands
of dormant and abandoned projects – many of them
with a note from the programmer(s) stating “I am
too busy right now to do any more work on this
project.” This is surely indicative of the fact that, in
terms of Maslow’s model, certain lower level needs
must be attended to as well. In other words, even
the most noble programmer must eat.

It is also telling us that many of the successful
OSS projects have had (or still have) substantial
backing (read: money) from commercial software
companies. Mozilla used to be Netscape;
OpenOffice came from Sun’s StarOffice; Firebird
was Borland’s Interbase. Additionally, the flagship
OSS project, Linux, currently has a question mark
behind it in the form of the SCO Group’s Intellec-
tual Property court case against IBM, even though
this is hotly disputed (http://www.groklaw.net/
index.php). This begs the question, “Can any big
software project be developed on purely OSS prin-
ciples, without commercial backing of some sort?”
The picture of the lone programmer slaving late at
night in some cramped basement to produce bug-
free code simply must be challenged (Lancashire,
2004).

5. CONCLUSION
Holland (1995) has shown that a CAS has a

much better chance to survive in the long term than
a top-down designed system. Therefore it would
be logical to conclude that an OSS project would
be more robust than a CSS project. Many OSS
projects evolve over time, with programmers chang-
ing or existing programmers revisiting their previous
work to implement improvements. The result of this
is software tools that are apparently robust and rela-
tively secure.

However, a number of concerns must be pointed
out:

OSS has no direct commercial market feed-
back. Users are encouraged to use bug reports, but
there is no obligation on the programmers to fix a
problem, purely a new “itch to scratch”

Slower innovation would be expected, be-
cause of the voluntary nature of the work.

The outcome suggests that technical rather
than user focus would occur. One should remember
that OSS is typically developed by programmers at
the “back end” of the system, rather than easy to
use “front end” programing.

A tendency in the software industry is evident to
view each new development as a “paradigm shift”:
a breathtaking silver bullet that will solve all system
development problems, from the first relational
databases, through GUI’s, object orientation, web
development.... each touted as a major break-
through. Of course, the reality is that all these devel-
opments are simply part of an unfolding industry.
OSS is part of this landscape, and can, in some ar-
eas, be cost-effective to use. But there is no Santa
Claus: there is also no magic cure for the woes of
the software industry.

As Bezroukov (1999) puts it: “Open source de-
velopment is now fashionable and it makes big news.
The news too often emphasizes achievements and
successful projects, but fails to address difficulties,
failures and aborted projects..... little is known about
how Internet-based virtual teams (IVT) really op-
erate and what problems develop in that sort of co-
operation.”

Levesque (2004) states that there are five major
problems with OSS:

 1. User interface design
 2. Documentation
 3. Feature-centric development
 4. Programming for the self
 5. Religious blindness
On the other end of the scale, some benefits can

be observed:
Higher stability, leading to lower maintenance

cost.
A piecemeal approach probably has higher

chance of survival than purely market one – espe-
cially in a monopolistic marketplace.

Security appears to be better implemented in
OSS (Geer et al 2003).

A number of businesses that have imple-
mented OSS found substantial savings http://
w w w. c o m p u t e r w e e k l y. c o m / a r t i c l e s /
article.asp?liArticleID=129881&liFlavourID=1

http://techupdate.zdnet.com/techupdate/stories/
main/0,14179,2860180,00.html

450

http://www.wired.com/news/infostructure/
0,1377,62236,00.html

http://www.varbusiness.com/sections/News/
breakingnews.asp?ArticleID=49098

http://www.e-cology.ca/canfloss/report/
CANfloss_Report.pdf

Support is freely available on the Internet, and
a number of commercial support companies offer
services, such as Novell, IBM, Xandros and Red
Hat.

Many of the criticisms against OSS flows from
a lack of understanding of the process - once clari-
fied, these concerns tend to disappear (Wheatley,
2004).

Finally, this study asks, “Can OSS provide a long
term solution to the problem of poorly written soft-
ware?” The answer - at this stage - must be: it de-
pends. It is true to say that mission critical business
systems are being run on OSS (Google and Ama-
zon being two prime examples), but there is a very
large number of applications lacking in the OSS
world. The answer to the question would probably
be that businesses most certainly should consider
OSS for areas where these have matured, e.g. da-
tabase management systems, web servers, operat-
ing systems and some “office” type applications.
Failure to do so could cost organisations their com-
petitive edge in the near future. Unfortunately, OSS
lags in a number of areas, where CSS have a defi-
nite edge: accounting, CAD, workflow control, vari-
ous bespoke packages. The prudent IS professional
will no doubt consider both OSS and CSS.

However, there is no reason why businesses
should not harvest the creative force of OSS pro-
grammers. Recognition for OSS programmers in the
way they want it is nothing but a sound business
investment. Frankly, businesses are in business for
themselves, not to support other companies. If OSS
can provide a more secure and less costly solution
than CSS, it would make sense to use it where ap-
propriate.

REFERENCES
Bezroukov, N. “Open Source Software

Development as a Special Type of Academic
Research” http://firstmonday.org/issues/
issue4_10/bezroukov/

Dooley, K. 1997: “A Complex Adaptive Systems
Model of Organization Change,” Nonlinear
Dynamics, Psychology, & Life Science, Vol.
1, No. 1, p. 69-97

(http://www.eas.asu.edu/~kdooley/casopdef.html)
Feller, J. and Fitzgerald, B. (2002) Understanding

Open Source Software Development,
Addison-Wesley, UK

Geer, D. Pfleeger, C. P., Schneier, B Quarterman
J.S., Metzger, P. Bace, R Gutmann, P: (2003)
“Cyberinsecurity: the cost of monopoly” (http:/
/www.ccianet.org/index.php3)

Healy, T (2004) “Has Open Source Reached Its
Limits?” http://www.ipi.org/
i p i % 5 C I P I P u b l i c a t i o n s . n s f /
P u b l i c a t i o n L o o k u p F u l l T e x t /
F4992D9C7780355786256E49001E7595

Holland, J.H. (1995): “Hidden Order”: Addison-
Wesley. Reading, MA

Kuwabara, K 2000 “Linux: a bazaar at the edge of
chaos” http://www.firstmonday.org/issues/
issue5_3/kuwabara/index.html#k6

Lancashire, D. (2004) “The fading altruism of Open
Source development” http://
www.firstmonday.dk/issues/issue6_12/
lancashire/

Levesque, M, 2004: “Fundamental issues with open
source software development” - http://
firstmonday.org/issues/issue9_4/levesque/
index.html

Maslow, A. H. Motivation and Personality (2nd ed.),
New York: Harper and Row,

1970 (http://web.utk.edu/~gwynne/maslow.html)
Perens, B (2001) http://perens.com/Articles/
Raymond, E (1998) (http://www.catb.org/~esr/

writings/)
Watkins, J. A. Multimethodology: An Alternative

Management Paradigm to Process Quality
Improvement, PhD. Thesis. Rand Afrikaans
University, 2003

Wheatley, M. 2004 “The Myths of Open Source”
http://www.cio.com/archive/030104/open.html

451

