
P
ro

c
e
e
d
in

g
s
 o

f
th

e
 N

A
C

C
Q

 2
0
0
0

W
e
ll
in

g
to

n
 N

Z
 w

w
w

.n
a
c
c
q
.a

c
.n

z

51

Persistent Object Storage
in the File System: How it
works and its use as a
database teaching tool

Definitions
Serialization – The ability to write the complete

state of an object to an output stream. De-serialization –
The ability to recreate a serialized object. Class – A
collection of data and methods that operate on that data.
Interface – A collection of empty methods that are
implemented by Classes. Object – An instance of a Class.

1. INTRODUCTION

Most business applications involve the permanent
storage of data. The majority of current business
applications are permanently linked to a specific storage
mechanism which cannot easily be changed without
redesigning the application itself. This problem together
with the fact that most new applications are object oriented
has brought about a need for software (a persistence
framework) that decouples object oriented applications
from the mechanism used to store their data.

Most of the work in this field is aimed at large
companies that need to access data from their legacy
relational databases and as such, is too expensive for
smaller businesses. The complexity of this type of
software has also lead many practitioners and consultants
to advise businesses to buy rather than develop their own
persistence framework. Ambler (1998) puts this
succinctly when he says: “Building a persistence layer is
spectacularly hard” and goes on to say “so do a little
shopping first!”. However, some work has been done, see
Charsley (1999), in the development of public domain
software that meets these needs and this paper deals with
one aspect of this.

One technique that can be used to permanently store
objects in Java applications is serialization. The
serialization of objects into files provides a cost free

Paul Charsley
Information Systems Section

UCOL Palmerston North
P.Charsley@ucol.ac.nz

ABSTRACT

The Java™ language provides a mechanism known
as serialization that enables Java objects created by an
application to be stored in files. A serialized object can
be converted back into its original object state through
the reverse process of de-serialization. This very simple
storage mechanism is being used by the author as part of
an application framework which can be used by software
developers to build low cost business systems. The main
problem with using serialization is that all of the features
that are needed for a robust storage mechanism need to
be implemented on top as part of the application
framework. These features include support for
transactions, rollbacks, commits, locks and the generation
of unique object ids. This paper examines the author’s
approach to all these problems and discusses how the
final product will be used as a teaching tool to aid in the
understanding of database technology.

52

storage system that can function on any operating system.
Unfortunately, unlike a database, the file system does not
provide standard database features such as transactions,
rollbacks, commits, record locking and unique ids so that
all of these features will need to be implemented.

Although complex to design and construct, the
author believes that a persistence framework that uses
file serialization would be an invaluable tool for small
businesses. In addition, it would provide a very useful
platform for the teaching of database principles and object
oriented design.

2. GENERAL PRINCIPLES

This section discusses some of the known
problems that must be dealt with when building persistent
mechanisms. It looks at how other researchers and
developers have tackled them and goes on to describe a
recommended approach when file serialization is used.

2.1 Mapping objects to their physical storage
medium

Most of the generally recognised strategies for
mapping the data in an object oriented application to the
physical storage mechanism relates to the use of relational
databases. The simplest technique, and that used by
Vadaparty (1999) involves mapping classes directly to
database tables. Class attributes are mapped to database
columns so that a table row maps directly to an
instantiation (object) of a class. This sounds simple in
practice, but what about inheritance? Should one table
represent all classes in the hierarchy or should a different
table be used for each class? Ambler (1998) describes
three possible solutions:
♦ Use one table for an entire class hierarchy

♦ Use one table per concrete class

♦ Use one table per class

The above techniques all have their particular
advantages and disadvantages. Using one table for the
entire class hierarchy can provide faster data access but
is inefficient. On the other hand, one table per class
implies slower data access but a more efficient use of
relational database tables. One of the advantages of using
the file system to store serialized object data is that it
can be used to model the hierarchical class structure of
the object oriented Java business system (Java only
supports single inheritance). As an example, consider an
application with a class called Person. If two classes

called Student and Lecturer inherit the attributes of
Person, then the Student and Lecturer serialized objects
would be located in a sub directory of the directory
containing the Person objects.

The other issue to be addressed is that of the data
structure to be used to store the serialized objects. A good
candidate is the Java Hashtable. This data structure
provides the ability to store any object along with a key
value that can be used to retrieve it. Of course it must be
recognized that the data structures provided with the
standard Java classes will never be optimized for efficient
data access and providing features such as indexing would
require a specialist data structure to be designed.

One big advantage of using serialization to store
data is that once the data is retrieved (de-serialized) it is
already in a data structure suitable for manipulation by
the application. Data restored from a relational database
normally has to be restored in a Vector or Hashtable
before the business application can make use of it. This
is almost always a very inefficient operation, Stanchfield
(2000), and copying data from a data store to a data
structure before using it is one of the main reasons for
poor performance in these types of applications.

2.2 Design patterns

Design patterns are proven solutions to standard
problems. The pattern concept was described nicely by
Alexander (1977) – “Each pattern describes a problem
which occurs over and over again in our environment, and
then describes the core of the solution to that problem,
in such a way that you can use this solution a million times
over, without ever doing it the same way twice.”. A
persistence framework will contain many standard design
problems and the rest of this section describes two
common patterns and their use.

2.2.1 The Peer pattern

This pattern is used heavily in the Java core libraries.
The philosophy behind the pattern is one of extracting a
very complex portion of a classes behaviour into a separate
“peer” class. Each class in a business system that is
designated as persistent (all instantiations need to be saved
to a data store) will need to have a means of saving itself.
It makes sense to move the implementation specific
details of saving to a separate peer class and have the
business domain class simply call methods in its peer
when it needs to perform a “persistence” operation.

53
N A C C Q 2 0 0 0

2.2.2 The Singleton pattern

The purpose of this pattern is to “ensure a class
only has one instance, and provide a global point of access
to it”, Gamma, E. et al (1995). By making the singleton
classes constructor method private and using a public
method to access a single instantiation of the class it is
possible to ensure that following the initial instantiation,
all subsequent calls use the same instance.

This nicely meets the requirements of a global
object ID that can be incremented and used to assign
integer id’s to each new object created. The Java code for
such a class is shown below:

public class OID {
private static OID instance;
public static int id;

private OID() {
super();
}

public static synchronized OID getInstance() {
if (instance == null)
 instance = new OID();
return instance;
}

public synchronized int getId() {
 ++id;
 return id;
}
}

3. DATABASE ISSUES

The following issues are by no means a complete
set of all the problems that need to be resolved. However,
they are indicative of the complexity of the problem. For
a more comprehensive list see Ambler (1998).

3.1 Locks

The ability to lock a set of objects that a particular
user is updating or deleting is fundamental if a business
system is to support multiple users accessing data
simultaneously. Reese (1997) introduces the concept of
a Lockholder who owns a lock object that is passed to
every business object that the Lockholder might change.

A business application for an academic records
system might instantiate a Person object for each user

that logs in to the system. In order to “become” a
Lockholder, the Person object would need to “implement”
a Lockholder Interface. In Java, an Interface is simply a
set of empty methods and any object that wishes to
implement an Interface has to provide method bodies for
all of them (it implements the methods).

A unique lock object would be created for the
Lockholder, which would be passed as a parameter to the
business object every time the Lockholder tries to take
possession of an object. If another Lockholder attempts
to modify an object held by that Lockholder, a lock error
would be thrown since a comparison of the lock already
associated with the object and that owned by the new
Lockholder would reveal that they were not the same.

3.2 Transactions

Transaction management is an essential feature for
any database management system. Most operations that
are performed on an object oriented business system
involve making changes or creating more than one object
at a time. We have already seen how a lock object and a
Lockholder interface can be used to prevent different
users from making changes to the same object at the same
time, we now need a technique to perform operations on
different objects as a single operation.

Reese (1997) uses the concept of a Transaction
object that is held by the Lock object. The Transaction
object is aware of all the business objects that have been
locked by the Lock object. When changes are made to
business objects, the Transaction object only commits
these changes to the data store if all of them were
successful.

4. THE PERSISTENT STORAGE
FRAMEWORK AS A
TEACHING TOOL

One of the problems of trying to teach database
principles with standard database development tools such
as Oracle, Progress and Access is that these tools were
not designed with teaching in mind. Although all database
development environments implement transactions and
record locking it is not possible to see how they do it.

An Object oriented storage framework that
implements all important database functions as objects
would enable students with an understanding of object
oriented principles to better grasp the fundamentals of
database principles. For example, it would be possible to
examine in detail the transaction object and see what its

54

responsibilities are and with which other objects it
collaborates in order to execute its functions.

5. CONCLUSION

An object oriented Java application framework was
designed with the objective of providing software that
could be used to aid small businesses in developing
countries and New Zealand in the design and construction
of business systems.

Using serialization to save objects to files stored
in the file system was seen to be the simplest method of
providing permanent storage for a business application’s
objects. However, it must be recognised that this
technique does not scale well and will be used mainly
when no commercial storage system is available or as a
start off point when testing or introducing a new
application.

Its use as a teaching tool is more obvious and the
author sees it as part of a wider strategy to introduce
object oriented techniques into our teaching
methodology.

6. REFERENCES

Ambler, S. (1998), The Design of a Robust Persistence
Layer for Relational Databases. <http://
www.ambysoft.com/persistenceLayer.pdf

Ambler, S. (1998), Mapping Objects to Relational
Databases. <http://www.ambysoft.com/
mappingObjects.pdf

Charsley, P. (1999), Af fordable business applications,
The Proceedings of the 12th National Advisory
Committee on Computing Qualifications, Dunedin,
4th - 7th July, 1999.

Vadaparty, K. (1999), Mapping Objects to Tables. The
Journal of Object Oriented Programming, July/
August 1999, pp 45 - 47, 59

Stanchfield, S. (2000), Advanced Model-View-
Controller Techniques. IBM Visual Age Developer
Domain library. <http://www7.software.ibm.com/
vad.nsf

Reese, G. (1997), Database Programming with JDBC and
Java. O’Reilly. pp 80 – 82, 96 – 97.

Alexander C, Ishikawa S, Silverstein M, Jacobsen M,
Fiskdahl-King I, Angel S (1977), A Pattern
Language. Oxford University Press, New York.

	
	GIS Education at UCOL - From the Teacher Perspective
	Erzsebet Bekesi
	Teaching BA100 (Business Applications) at Taranaki Polytechnic:
	Leonie Bridgeman
	Students Experience the Theory: Taranaki Polytechnic's IS301
	Noel Bridgeman
	The Competitive Model: Should We Really all be Aspiring to be
	Aberrant Behaviour 29
	Peter Brook, Samuel Mann,
	 Angela Virtue
	Bootstrapping a Research Culture: Lessons from the BInfotech
	Brian Brown
	Concepts and Concept Mapping: Representing states and progression in a
	Chris Burrell
	Persistent Object Storage in the File System: How it works and its
	Paul Charsley
	Towards a Multi-Language Teaching Model of IS 55
	Ying Chen, Graeme Faulkner
	
	Using IT for Active Student Feedback in the Learning Environment.................. 61
	Tony Clear
	Computer-Aided Learning of Project Planning Within a
	Barbara Crump, Craig Godley
	Optimising the Delivery of Programming Units on Degree Courses 79
	Simon Dacey, David McCurdy
	Remote Remedies:Challenges When Teaching On-Line 85
	Ross Dewstow,
	Mae McSporran, Stuart Young
	Use of Embedded Applications in Automatic Loop Tuning 93
	Chris Cox
	The Music Notation Toolkit: A Study in Object-Oriented Development
	Andrew Eales
	Taonga On Line: Managing and Preserving Culture in a Digital Age
	Trish Evans,
	Kevin Wilkinson
	Helping Us Teach - Who do We Select for our Degree Programme? 115
	Bruce Ferguson
	Business Skills: Exploring the perceptions of IT students,
	Glennis Goodwill
	On-line Teaching Using an Electronic Forum in Distance Education.
	John S. Green, Craig G. Eves
	Being Positive About Negative Numbers: How to Win Compliments
	Gordon Grimsey
	Helping Cheats Prosper 139
	Dan Hawthorn
	Testing : Comparison Between What is Taught and What is
	Peter Henry
	The PASS Project - Identifying Parameters Affecting Student Success
	Donald Joyce
	Exploring the Impact of Information Technology on Society
	Donald Joyce
	Applying Soft Systems Methodology for User-Centred Design
	Diana Kassabova,
	Rachel Trounson
	Database Design and the Reality of Normalisation
	Dave Kennedy
	80% of What ? - A Preliminary Investigation of Tutors Understanding of the
	
	Dave Kennedy,
	Janne Ross
	Quality Assurance: How Much is Needed? 179
	Cary Laxer,
	Alison Young
	ONWARD and UPWARD A Review of the Bachelor of
	Gerard Lovell
	INFORMATION WARFARE
	and its impact on the Information Technology
	Brian Main
	Degrees of Information Technology in New Zealand Vocational
	Samuel Mann, Keith Cowan
	A Language Model Based Optical Character Recogniser (OCR)
	What the Students Learn: learning through empowerment 213
	Nell Buissink-Smith
	Information Systems Research Maturity: UCOL as a Case Study
	David McCurdy
	Action and Emancipation: The Flexible Assessment Paradigm
	David McCurdy
	Bridging the Gap Between Technology and Information Systems:
	David McCurdy
	Security on a Linux Box: - a story of problems with hacking
	Course Web: A Report On Converting Course Notes To Web Pages
	Matt Melchert
	Moderation as a Tool for Continuous Improvement
	Peter Miller
	Third Year Industry Projects: Reaching For Reality
	Mike Moller
	A Pilot Study of a Methodology for Graduate Outcome Survey 267
	Linda Neilson
	Assessment: Central to Learning
	Beryl Plimmer
	A Case Study of Portfolio Assessment in a Computer Programming
	Beryl Plimmer
	Social Considerations in Distance and Virtual Education
	Christopher Rafferty, David McCurdy,
	Graeme Foster
	Help Desk: Providing Students With Real-life Experiences
	Garry Roberton,
	Robin Holdsworth
	
	Aptitude Testing as a Predictor of Success: The
	Janne Ross
	Developing a New Course for the Software Development
	Nurul Sarkar,
	Tony Clear
	Hardware Basics: An Alternative Assessment Approach
	Ranjana Shukla, Alison Young
	A Bulletin Board for Increased Communication and Student
	David Skelton,
	Owen Giles
	Real World "Messes": Possibilities for Teaching IT through a
	David Skelton
	"Have-nets" and "Have-nots" - What Determines Internet Access
	Michael Smythe
	Delivering New Curricula: A Case Study of delivering the
	Sarah Snell, Rachel Conley
	Anne Steele
	Teaching Software Engineering in a Practical Way 345
	Ken Surendran,
	Frank H. Young
	Success Factors of Student Projects from the Hosts' Perspective
	Robert Sutcliffe, Graeme Kuypers
	An Achievable Computing Solution for Schools
	Robert Sutcliffe,
	Graeme Kuypers
	Information Systems Development Practice in New Zealand
	Hazel Taylor
	Multipoint Desktop Videoconferencing: technology and
	Carole L. Teixeira
	An Argument for the Information Systems Educators' Preferred
	Irene Toki
	The Effects of Business Simulations on Teaching and Learning in
	Irene Toki,
	Catherine Snell-Siddle
	Communication With Students From Other Cultures
	G.W.Tongariro
	Designing Web Pages for Producing Electronic and Paper Based
	Michael Verhaart
	Workplace Assessment - Balancing the Needs of Student and Organisation 411
	Malcolm Wieck
	
	Boris Bacic
	
	Help Desk: The Who, Why, What, When and Where of Training a
	Deirdre Billings
	The Bionic Baby Grows Up 421
	Peter Brook, Samuel Mann, Greg Trounson
	Electric Fence Demonstration 422
	Peter Brook, Samuel Mann, Paul Davies
	The Poetic Computer 423
	Peter Brook,
	Andrew Sewell,
	John Dickson
	Applied Research in Project Management Subject Teaching 424
	Dobrila Damjanovic-Zivic
	Role Play on Interviewing leads to Teaching Social Skills 425
	Shirley Elliot
	Who Said You Can't Teach an Old Dog New Tricks 426
	Kay Fenton,
	Pam Malcolm
	Data Mining On Distributed Assessment System 427
	T.T. Goh, Kwan, E.E.
	Quotes for Every Occasion (module!) 428
	Peter Henry
	Local Search Engines for Local Queries 429
	Leo Homes
	A Model for Assessing the Impact of Electronic Commerce On
	-A Blend of Multiple Criteria and
	Jie Lu, Su Tang,
	Gerry McCullough
	Perceptions of Computers: The Good, The Bad and The Ugly 431
	Donald Joyce,
	Carolyn Nodder,
	Mark Northover, Johannes Sprigode
	Patterns of Success: Who Does Best? 432
	Donald Joyce,
	Sandra Knight, Sam Kolahi,
	Ranjana Shukla
	Changes in the Level of Internet Use by UNITEC Computing Students 433
	Stuart Young ,
	Mae McSporran, Ross Dewstow
	A Web-based Infrastructure Supporting Research at Otago Polytechnic 434
	Samuel Mann, Graham MacGregor
	Delivery of courses with remote partner instiutions 435
	Network Security
	Hira Sathu,
	Caroline King
	Scheduling of Polytechnic Timetables by Constraint Logic Programming,
	Si-Eng Ling
	Academic Staff Workload Models 438
	Alison Young, Phil Bretherton
	Industry Certification: Does it have any place in our established

