
145Proceedings of the NACCQ
Napier New Zealand July 2001
www.naccq.ac.nz

1. INTRODUCTION
Patterns are not new.  Using them to achieve the holy 
grail of software re-usability is new-ish.  They are 
not, however,  “... a silver bullet.  They certainly won’t 
single-handedly solve the software crisis.”  (Rising, 
1998, p. 3)  Patterns are platform independent, 
web-deliverable, open-sourced, stage-delivered, 
extensible objects.  They embody named nuggets of 
insights into recurring problems; within a given context 
they provide the core of a proven solution that can be 
implemented by a user to solve any number of given 
problems.  Christopher Alexander said: 
“Each pattern describes a problem which occurs 
over and over again in our environment, and then 
describes the core of the solution to that problem, in 
such a way that you can use this solution a million 
times over, without ever doing it the same way twice” 
(Alexander, 1977).

Following Alexander’s pattern language approach, 
adopted to create lasting architecture of quality, a 
number of notables in the software industry have 
grasped an opportunity to impose a practical, 
proven style of presentation into the quest for better 
software authorship.  At CPIT, The Pattern Language 

ABSTRACT
Pattern frameworks have emerged as a 
powerful if not yet pervasive tool for the 
continuous improvement of software authorship, 
teaching, business administration and building 
design.  The concept of somehow storing 
proven solutions to repeating problems in a 
readily-retrievable form has enormous appeal 
to professionals in all walks of life.  While there 
have emerged some excellent templates for 
the creation of effective patterns there are a 
number of alternatives that each offer something 
to attract different pattern users.  This paper 
reviews those observed so far, considers 
their features and attempts to recommend a 
preferred version or versions in the light of 
developed criteria.

KEYWORDS
Patterns, frameworks, software authorship.

Patterns: Lust for Glory 
Malcolm Wieck

School of Computing
Christchurch Polytechnic

Christchurch, New Zealand
wieckm@cpit.ac.nz



146

of Teaching project is an example of an application 
outside software development where patterns are 
being written.

In order to obtain a pattern to use, users must search 
for an appropriate pattern from a catalogue and 
then interpret its use in their own implementation of 
the given solution.  The user will typically apply the 
solution in different ways from those encountered 
(and perhaps even intended) by the pattern author, 
so a thorough understanding of the context and 
forces acting on the problem is required.  If this is 
not achieved, they might fail to match the required 
conditions under which the pattern should be applied 
with the appropriate pattern.  To obtain a successful 
match, the user needs to be sure that they have 
the right pattern for the problem they need to solve.  
The presentation of the pattern must display the 
information contained within, in a transparent, logical, 
easy-to-follow way.  It is thus held that the pattern 
format is an important factor in the ultimate usability 
of any pattern, or complete pattern language and 
that care should be taken in establishing the chosen 
format if the hard-won knowledge is not to be hidden 
or made difficult to apply.

It is further held that a concisely structured format, 
with contrasting headings separating the sections, 
offers advantages for the hard-pressed developer 
over more verbose, story-like versions that require 
more time to read through.  A small-scale, pilot 
experiment was carried out using two different 
versions of the same patterns from an organisational 
pattern language.  Organisational patterns were 
chosen since the same patterns were readily 
available in both formats.  A classroom tutorial of a 
stage three information systems paper that teaches 
the use of software patterns was used as a vehicle for 
the experiment that looked for indications of greater 
suitability of one or the other format.  The results are 
given below.

2. HORSES FOR COURSES
There are several available formats for writing out 
patterns, but the whole point of all patterns is the 
same: to help the user by communicating knowledge.  
For this knowledge to be of any use to a potential 
user it must be retrievable; it must also be effectively 
applied to an appropriate problem.  Readers must 

therefore search for solutions that approximately 
match their problems before they apply the solution.  
Exactly where and how they search is outside the 
scope of this paper and is something the author will 
address in the future.  

John Vlissides, an editor of PLoP2 (PLoP 2, 1996) 
had this to say about pattern forms following his 
workshop on software architecture in Dagstuhl, 
Germany where he outlined habits all pattern writer 
should try and acquire:
The pattern concept is new enough and the subject 
matter complicated enough that some people have 
a hard time seeing the point of it all. Everything that 
can be done to make a pattern approachable should 
be done (Vlissides, 2001).

Despite the interest in buildings and communities 
spawning from Alexander’s work, it is reasonable to 
assume that software authors will look for patterns to 
inform their work in a catalogue that bears the name 
of some aspect of computing, rather than building 
architecture.  Although that is logical behaviour, it is 
perhaps unfortunate that it will at the same time deny 
access to those patterns that have been abstracted to 
illuminate higher-order thinking. Still, the commercial 
imperative rules many people’s lives, so this will be 
a price many will gladly pay. While some really neat 
pattern ideas, sourced from alternative catalogues 
may be missed, the current problem will get the 
attention it quickly needs, in the form of a workable 
solution.

Few followers of the creed would be surprised to 
learn of the existence of a pattern for writing patterns 
themselves; Gerard Meszaros and Jim Doble 
published such a pattern language in the  (Meszaros 
and Doble, 1998) The existence of a pattern for 
writing patterns might lead the first-time enquirer to 
believe that since the patterns were to be written by 
disciples of the faith, surely all patterns would have 
the same format?  Yet pattern authors have used 
a number of different pattern formats in which to 
hold their valuable knowledge; that the existence 
of a solution in no way guarantees its wholesale 
implementation.  Apparently then, groups of authors 
have clustered into areas of common interest and 
used the pattern formats they feel are best suited 
to hold their collective wisdom or else formats with 
which they are most comfortable.



147

Another word from Vlissides from the same workshop 
referred to above, confirms the need to construct 
patterns that are both easy to read and follow 
effective formats:
Patterns have the insidious property that they 
are usually perfectly understandable to people 
who are familiar with the problem involved and its 
solution. Such people have used the pattern before 
unconsciously. Thus when they see the pattern, they 
can recognize it immediately, even if it isn’t presented 
very well. The real challenge is to make the pattern 
understandable to people who have never run across 
the problem before  (A summary of the workshop 
appears in ACM Software Engineering Notes, July 
’95, Vol. 20, No. 3, pp. 63-83).

It is held that for a given scenario and pattern 
language, the choice of pattern format will have an 
effect on the both the speed with which a required 
pattern can be found and also the accuracy with 
which the pattern can be matched to a given problem 
scenario.  A simple experiment was used to test this 
hypothesis.  Subjects were presented with a problem 
requiring the retrieval of useful patterns from a 
collection of useful and not so useful patterns.  One 
half of the subjects were presented with a pattern in 
Alexandrian Form; a fairly lengthy, verbose format. 
The other half of the subjects was given a more 
concise format, due to the work of James Coplien 
and the Gang of Four (GOF) (Coplien, 1995).  The 
patterns were graded in terms of their appropriacy 
and the ability of the two groups to select the three 
most appropriate patterns was then measured.

The two formats used for the experiment are given 
in more detail below.

3. ALEXANDRIAN FORM
This format is taken from Alexander (1977, p. x), since 
the patterns represent things that will be built in three 
dimensions and will be viewed by others; a picture 
precedes all other parts of the pattern.  The section 
headings and short descriptions follow.  Numbering 
has been added to aid reading.
1 Picture - showing the archetypal example of that 

pattern.
2 Introductory paragraph - to set the pattern’s con-

text.

3 Three diamonds  ? ? ? - to mark the beginning of 
the problem.

4 A headline - in bold type, giving the essence of 
the problem in one or two sentences.  

5 The body of the problem - empirical background, 
evidence for its validity.

6 The solution - in bold type, the heart of the pattern 
describing the relationships required to solve the 
problem in its context, stated in the form of an 
instruction.

7 A diagram - showing the solution in diagram 
form.

8 Three diamonds  ? ? ? - to mark the end of the 
main body of the pattern is finished.

9 Finally, a paragraph is written that ties the pattern 
to all the smaller patterns in the language that are 
needed to complete this pattern.

Alexander claims two main purposes behind his 
format:  “First, to present each pattern connected to 
other patterns, so that you grasp ... all 253 patterns 
as a ... language.  Second, to present the problem 
and solution of each pattern in such a way that you 
can judge it for yourself, and modify it, without losing 
the essence that is central to it.” (1977, p. xi)  This 
was chosen to represent the fuller pattern format 
standard, partly out of deference to the pioneer 
author and partly because in terms of verbosity it 
is nearer one end of the spectrum than most.  For 
the purposes of the experiment a reasonably stark 
contrast was needed to highlight any differences in 
pattern usability due to this factor.  

4. COPLIEN FORM
The translation of the organisational patterns chosen 
from the modified GOF format has retained the 
essence of the original but omits the picture.
The section headings are:
1 Pattern Name
2 Problem description
3 Context 
4 Forces or tradeoffs
5 Solution
6 Example
7 Resulting Context
8 Design Rationale.

James Coplien’s work on organisational patterns 
“... attempts to use patterns in a generative way.”  In 



148

this way, patterns perform more than simple single 
problem solving duties; used comprehensively and 
with sensitivity, they “... should help us build new 
ones.” (Coplien, 1995, p. 184)  Coplien appears in 
sympathy with Alexander’s lofty ideals and believes 
patterns should possess an almost spiritual quality 
- referred to as a “quality without a name.” (QWAN) 
 

5. METHOD
The subjects were given extracts from pattern 
catalogues in one of the two pattern formats 
described above and an organisational problem in 
text form.  Extracts comprising six patterns were 
chosen to minimise the size of the task and hence 
make the experiment as subject-friendly as possible.  
Since this was effectively a pilot study, it was felt that 
a small-scale task would be appropriate and perhaps 
inform further studies in this area. 

Space limitations preclude the presentations of the 
catalogues and question paper, but suffice to say the 
problem was a piece of pure text, 103 words long and 
it outlined an organisational weakness.  Four patterns 
represented reasonable solutions to the problems the 
organisation faced, with one in particular - pattern 
‘C’- judged to be especially effective.  Subjects had 
to select and rank the three most appropriate patterns 
given only 5 minutes in which to read the question and 
peruse the pattern catalogues for their solutions.  

The experiment was conducted first on a group of 
final year BBComp students who had attended a 
lecture on the use of patterns and subsequently on 
members of staff in the School of Computing.  See 
Fig 1.  Of the staff sample, only one was known to 
have seen the lecture, but as practicing business 
computing professionals, they could be expected to 
be familiar with the principles of the material. See 
Fig 2.  Two patterns were included as distracters 
(patterns ‘A’ and ‘F’); their selection would indicate 
the subject had failed to appropriately match the 
problem to the available patterns.  The names of the 
six patterns chosen for the experiment were:
A. Size the Organization D.  F o r m  F o l l o w s 
Function
B. Developer Controls  E. Architect Also  
    Process          Implements  
C. Code Ownership F.  Apprentice

Two indicators of success were employed: a pattern 
search was deemed successful if ‘C’ was ranked first 
or second choice.  A second indicator of success was 
the absence of patterns ‘A’ and ‘F’ in the rankings, 
they having been deemed to contribute little or 
nothing to the problem under consideration.  

6. RESULTS
Results as in Tables 1 and  2.

7. SUMMARY
The figures obtained from this pilot study are not 
conclusive; the sample size is small and the variations 
in the two groups are thus not very significant.  The 
initial indication of the first success criterion is the 
reverse of that expected for the student sample and in 
accordance with predictions for staff. The respective 
concise and verbose format percentages were 67% 
and 100%, indicating students were able to use the 
verbose format more efficiently than the concise 
format, although a higher percentage of concise 
format patterns placed pattern ‘C’ first (67% against 
56%).  For staff the figures were 63% against 50%, 
again, not conclusive.  (The temptation to conclude 
that members of staff are more predictable than 
students will be resisted.) The second success 
criterion was even less conclusive, with identical 
scores of 93% for students indicating zero difference 
in format choice and  96% and 92% for the two 
formats for staff.

8. FUTURE PATTERN-WRITING 
DEVELOPMENT

The following are some observations and minor 
concerns over the way pattern writing is developing.  
First, the kind of language used in naming and 
subsequently describing the pattern is sometimes 
overly jargon-filled, idiomatic and occasionally 
downright quirky.  For example, the applicability of 
the following patterns is difficult to infer from their 
chosen names: the reader’s personal interpretation:  
“Smoke filled room”, “Moderate Truck Number” and 
“Buffalo Mountain.”  In contrast, some are much 
more easily understood: “Three To Seven Helpers 
Per Role”, “Developer Controls Process” or “Let the 
Tools do the Work” would probably be more easily 
interpreted and hence selected or discarded with 
minimum investment by the pattern searcher. 



149

  Coplien/GOF (Shorter Format)   Alexandrian (Verbose Format)
  Ranking       Ranking
 1 2 3 1 2 3
 C B E C E B

 B D C C E A

 C D B B C D

 C E D D C B

 C D - D C B

 C D E C D B

 A B D C D E

 C B D D C B

 D E F C B A

 18 students in all, 9 students given the shorter format, 9 the longer format
 No. of ‘C’ Answers ranked 1 or 2  = 6    No. of ‘C’ Answers ranked 1 or 2 = 9 
‘ A’ or ‘F’ discarded = 25/27           = 93%  ‘A’ or ‘F’ discarded = 25/27  = 93%
 % of ‘C’ answers ranked 1 or 2     = 67%  % of ‘C’ answers ranked 1 or 2 = 100%

Figure 1
Responses from Students, having had “patterns” lectures

  Coplien/GOF (Shorter Format)   Alexandrian (Verbose Format)
  Ranking       Ranking
 1 2 3 1 2 3
 E D C C D E

 C E B D A C

 B C D B A E

 E C A D C E

 C E B E D B

 D B E C B D

 C D B D E C

 E D C C B D

 16 Staff in all, 8 staff given the shorter format, 8 the longer format.
 No. of ‘C’ Answers ranked 1 or 2  = 5    No. of ‘C’ Answers ranked 1 or 2  = 4
 ‘A’ or ‘F’ discarded = 23/24    = 96%  ‘A’ or ‘F’ discarded = 22/24  = 92%
 % of ‘C’ answers ranked 1 or 2    = 63%  % of ‘C’ answers ranked 1 or 2 = 50%
 Totals for both staff & students: 11/17 = 65% (shorter)   13/17= 76% (verbose)
 Ideally ‘A’ or ‘F’ discarded and ‘C’ answers ranked 1 or 2  would each be 100%.

Figure 2 
Responses from Computing Staff, having had no “patterns” lectures



150

If the meaning of the pattern names is rather obscure 
to all but those involved in the pattern’s creation, the 
chances of the patterns being quickly found by a user 
outside the circle must be diminished.  While numbers 
of software patterns are still small in proportion to total 
code written, this obscurity issue is not likely to be a 
major problem.  However as pattern numbers grow 
and inexperienced pattern users also find themselves 
trawling the books and web sites for solutions, the 
need to make the patterns easier to find and easier 
to understand and apply increases.  Authors should 
perhaps have an eye to the future use of their 
work and allow for different cultural backgrounds, 
inexperience and first language.  Certainly, a group of 
American software developers are entitled to call their 
patterns whatever they wish - it’s their knowledge that 
builds the pattern after all.  The penalty however is 
that potentially obscure naming may serve to exclude 
many potential pattern users, a situation surely 
contrary to the spirit of knowledge sharing found in 
practically all fields investigated during this paper.

Will pattern writing stop, or reach saturation point?  
In time, will there be so many patterns available 
for builders of software that the need for creativity 
evaporates?  Vast libraries of solutions for every 
conceivable organisation’s project requirements, 
covering analysis, design, implementation and 
maintenance phases will perhaps one day be 
available.  Remembering that the better patterns 
currently help us write new ones and assuming 
artificial intelligence (AI) continues to mature, it is 
not too far-fetched to suppose that soon, the AI-
capable pattern generator will become a reality.  
Voice actuated software production might simply 
become a matter of the user discussing business 
requirements with the AI front end of the pattern-
writing software, which then searches for available 
patterns to compose the software before offering a 
range of solutions.  The user could then select from 
a range, ranked on, say, Cost Benefit Analysis.  

Standard practices of staged delivery, prototyping, 
receiving user feedback could be retained.  Users 
would get what they asked for - no more and no 
less and they would be confident that they were 
obtaining proven code with high quality, tried and 
tested documentation to support it.  Corrective and 
perfective maintenance would be greatly simplified, 
anticipated even, with known, working enhancements 
priced in advance and available on demand.

Crystal ball gazing aside, it is possible that the patterns 
writing fraternity may fracture with the dividing line 
being either the method of creation or treatment of 
the patterns once they are written.  Viewed as a 
short-term solution to an immediate problem they can 
provide a quick fix to those that seek it.  Such authors 
in this camp create so-called non-generative patterns. 
For those with higher intentions, perhaps carrying the 
spirit of Alexander and others who follow his work, 
the aim is to build generative patterns that “... are 
concerned with the act of building.  They are meant 
to embody the Alexandrian ideals.” (Evitts, 2000 p. 
189)  Evitts refers to a pattern’s connections thus: “... 
within a pattern, establish its value and generativity by 
showing how it connects and combines the elements 
of the solution in a way that provides opportunities 
for creative use.” (2000, p. 195)  

9. CONCLUSION
The belief is still held that there are pattern formats 
that any given audience will find easier and more 
effective to use than others.  Anecdotal evidence from 
colleagues supports this.  The pilot study conducted 
neither supports nor refutes it.  The Pattern Language 
of Teaching project underway at CPIT will need to 
adopt a format that does justice to the level of effort 
that will be needed to create it. The format should 
allow access to the knowledge from as wide an 
audience as possible not just the narrow group of 
authors “in the know”, after all it is those without the 
knowledge that need it most.  As Robert Martin said: 
“Cataloging (sic) [patterns] makes them accessible 
to those of us who have not stumbled across the 
techniques on our own.” (Martin, in Rising, 1998)

ACKNOWLEDGMENTS
I would like to thank the students of the final year 
Bachelor of Business Computing course for their 
cooperation.  I would also like to thank Dr Mike Lance 
of CPIT, for his inspiration and continued support.

REFERENCES
Alexander, C., Ishikawa, S., Silverstein, M., (1977) 

“A Pattern Language: Towns - Buildings - Con-



151

struction.” Oxford University Press, New York.
Coplien, J.O.  (1995) “A Generative Development-

Process Pattern Language, Ch 13 in Coplien, J.O. 
and Schmidt, D.C. (Eds.) “Pattern Languages of 
Program Design.”  Addison-Wesley.

Evitts, P., (2000) “A UML Pattern Language.” Macmil-
lan Technical Publishing.

Meszaros, G., and Doble, J. (1998) “A Pattern 
Language for Pattern writing.” in Martin, R. et al 
(1998) “Pattern Languages of Program Design.” 
Addison-Wesley.

Martin, R. (1998) “PLoP, PLoP, Fizz, Fizz.” Article 
in Rising, L. (1998) “The Patterns Handbook.”  
Cambridge University Press.

Rising, L. (1998) “The Patterns Handbook.”  Cam-
bridge University Press.

Vlissides, J.M., Coplien, J.O., Kerth, N.L. (Eds) 
(1996) “Pattern Languages of Program Design 
2.” Addison-Wesley.

Vlissides, J.M., (2001) “Pattern Hatching - Seven 
Habits of Successful Pattern Writers.”  Retrieved 
13 May 2001 from the World Wide Web: http://hill-
side.net/patterns/papers/7habits.html.


