
255Proceedings of the NACCQ
Napier New Zealand July 2001
www.naccq.ac.nz

equipment, lighting systems and stage machinery.
Standard commands that perform common tasks
associated with these devices form the core of the
MIDI protocol. However, MIDI is an open-ended
protocol, supporting the transmission of user-defined
data. This feature provides unlimited possibilities for
the development of unusual MIDI-based systems.
Application areas include robotics, spatial sound
(Eales, 1994), animation (Riemersma, 1999) and
real-time process control (Stevens, 1997). Another
area of interest is the sound produced by abstract
mathematical worlds such as cellular automata (Eales,
1996) and biological worlds (Dunn, 1997). This paper
does not discuss the extensively documented MIDI
standard, but focuses on the development of Windows
MIDI applications and the innovative application of
MIDI. Detailed descriptions of MIDI are provided by
(Lehrman, 1993), and Rona (1994). Extensions to
MIDI are discussed by Selfridge-Field (1998).

2. THE MIDI PROTOCOL
MIDI is a serial communications protocol that operates
at 31.25K baud. This protocol consists of a variety
of predefined messages that accomplish different
tasks, such as playing a single note on a synthesizer

ABSTRACT
MIDI capability is a standard feature of audio
hardware on Intel platforms. Interesting and
innovative MIDI applications running under
Microsoft Windows can be developed using the
multimedia capabilities of Windows. This paper
examines Windows MIDI development, and
mentions the non-trivial difficulties associated
with developing robust MIDI applications. Two
interesting applications of MIDI software are
also discussed.

KEYWORDS
MIDI , Windows Programming, Aud io
Applications.

1. INTRODUCTION
MIDI (Musical Instrument Digital Interface)
is a standardized, real-time communications
protocol that facil itates communication
between hardware devices that support MIDI.
Communicating devices typically include
computer sound cards, synthesizers, recording

Innovation through MIDI: Develop-
ing Windows MIDI Applications

Andrew Eales
Central Institute of Technology

Upper Hutt, New Zealand
andrew.eales@cit.ac.nz

256

Visual development environments such as Visual
Basic, Delphi and C++ Builder provide multimedia
components that use MCI functions. Streams are a
recent addition to Windows, included with Windows98
and supported by later versions of Windows95.
Streams provide a compromise between the limited
functionality of the MCI and the programming
difficulties associated with the low-level functions.
Streams provide most of the functionality of the
low-level API but do not support timestamped input
of MIDI data. Robust applications that require
timestamped input and output must use the low-
level API. Support for MIDI is gradually appearing
in Microsoft’s DirectMusic, which may become the
standard for future MIDI development.

3.1 Basic MIDI Input and Output
Low-level API functions are documented in the
Microsoft SDK, which also exists as a set of help
files shipped by compiler vendors with their products.
Despite recent improvements, the SDK is not a clear
introduction to MIDI programming. The event-driven
architecture of Windows does not allow the polling
of input ports. Windows sends an application a
message or callback when a specific event occurs.
A callback window procedure or a callback function
process Windows messages for an application.
Standard event-handlers such as OnMouseDown
that use a callback window procedure are familiar to
Windows programmers. Windows posts a message
to a callback each time a complete MIDI message is
received from an input port. To read MIDI data from
an input port:

1 Determine the number of input ports available to
Windows using GetNumIntputDevices()

2 Define a callback window or function.
3 Open an input port using MidInOpen(. .) and at-

tach the callback to the input port by specifying
the callback as one of the parameters.

4 Respond to the callback message, which will be a
MIM_DATA message when the input port receives
a complete MIDI message.

5 Close the input port before the application termi-
nates with MidiInClose()

or exchanging data blocks between MIDI devices.
Two broad categories of MIDI messages exist. The
first category consists of commands made up of
one, two or three bytes of data. Typically, a status
byte defining the type of message and one or two
data bytes that serve as parameters to the message.
The status byte consists of a four-bit command and
a four-bit channel assignment, as MIDI uses sixteen
distinct communication channels. As an example,
a NoteOn message, which plays a single note on a
synthesizer, is represented by four bytes as shown
in Figure 1.

Pitch is encoded as a keyboard key number and
velocity affects the loudness of a note. Sending the
four bytes to a MIDI soundcard plays a middle-C note
on channel one.

A second category of MIDI messages, system
exclusive (sysex) messages support user-defined
data by allowing any number of data bytes to
be transmitted between a start and an end byte
represented by F0H and F7H. System exclusive
messages are typically used to transfer variable-
length data blocks between a computer and a MIDI
device.

3. DEVELOPING WINDOWS
MIDI APPLICATIONS

Windows 3.11 and later versions of Windows provide
a uniform software layer that MIDI hardware can
communicate with using hardware-independent
virtual device drivers. There are three different
ways to implement Windows MIDI applications, by
using the Media Control Interface (MCI) functions,
using MIDI streams, or via the low-level Application
Programmer’s Interface (API) functions.

MCI functions encapsulate the low-level multimedia
API providing simple solutions to using MIDI.

 Byte1 (MSB) Byte2 Byte3 Byte4 (LSB)
 Not used Data2 Data1 90H (All values in Hex)
 Velocity Pitch NoteOn (9nH) Channel 1 (0H)

Figure 1

257

The specified callback handler will also be sent
messages when the port is opened and closed. The
output of MIDI data is easier as the process does not
use a callback procedure. A port is opened and then
a byte string sent to the output port.

3.2 Timestamped Data
Real-time applications such as musical performances,
lighting sequences or the labeling of tomato cans
require exact timing information for the sequencing of
events. Windows95/98 provides multi-tasking using
separate execution threads. Unfortunately, this design
decision means that real-time applications cannot
obtain accurate timing information (Messick, 1998).
Code that attempts to obtain the time may become
delayed in an application’s message queue, or may
have to wait for other threads to finish executing.

3.2.1 The Windows 3.11 Legacy
Windows 3.11 is a sixteen-bit operating system,
designed to run on Intel processors having a word
size of sixteen bits. Windows95, WindowsNT and
all later versions of Windows provide thirty-two bit
environments. However, Windows95 and 98 have
retained the sixteen-bit multimedia subsystem of
Windows 3.11. Only WindowsNT/2000 are full thirty-
two bit operating systems. The sixteen-bit multimedia
extensions provide a timer that operates using
processor interrupts guarded by a mutual exclusion
semaphore to provide extremely accurate timing
information. Unfortunately, thirty-two bit code and
sixteen-bit code cannot communicate directly, as
sixteen-bit memory addresses must be converted
to thirty-two bit memory addresses and vice-
versa. A thunk layer that translates code between
these different word sizes is required. Thunking is
described by the Microsoft SDK, and the use of a
thunk to provide access to the sixteen-bit multimedia
subsystem is described by Messick (1998).

The correct sequencing of MIDI data is the
programmer’s responsibility with one exception;
Windows will timestamp incoming MIDI data that is
handled by a function callback. The timestamped
input data must usually be processed by a window
procedure for the data to be used effectively by an
application. Although the timestamped data may be
delayed in a message queue, the timestamping will
be accurate.

3.3 System Exclusive Messages
The transfer of system exclusive data requires
different low-level functions from the API functions
used to transfer fixed-length messages, as the size
of data blocks is the critical factor. Sysex data does
not require timestamping as the data is processed
as soon as it is received. System exclusive output
requires a MIDIHDR structure to be created which
provides the size and address of a data block to
Windows. System exclusive input requires a callback
procedure to process data buffers filled by Windows
from the input port.

Descriptions of the various options and excellent
code examples are provided by Messick (1998),
and by various contributors to ‘The MIDI Fanatics
Brainwashing Centre’ referenced at the end of this
paper.

4. INNOVATIVE MIDI APPLICA-
TIONS

The creative use of MIDI is only limited by the
availability of hardware and the imagination. Two
examples of interesting applications are spatial sound
processing and the sonification of abstract and real-
world processes.

4.1 Spatial Sound
Projecting sounds into a virtual space is of interest
to composers, researchers in acoustics and
the designers of virtual reality systems. Multiple
loudspeakers are used to create a virtual sound
space. Audio signals are mixed and routed to
the different loudspeakers to create the illusion
of movement within the virtual sound space. A
dedicated hardware unit at Rhodes University that
mixes and routes analog audio under MIDI control
is documented by Wilkes (1991). MIDI software that
controls sound within a virtual space is discussed
by Eales (1994).

An interesting possibility provided by the recent
increase in network performance is to use an entire
computer laboratory as a spatial sound system. Such
a system can be programmed using C++ or JavaMIDI
(Marsanyi, 2001), where one or more server
applications control the routing of MIDI data to client

258

machines. Clients can translate MIDI data into audio
using standard soundcards installed on the client
machines. Support for distributed applications makes
Java a suitable language for such an application.
Future computer sound cards are likely to facilitate
MIDI control of the digital audio, providing cost-
effective environments for spatial sound systems.

4.2 The Sonification of Real and
Abstract Worlds

MIDI can be used to investigate the sounds formed
by data and relationships that exist in various real
and abstract worlds. These worlds include descriptive
data or organisational relationships that occur within
chemistry, mathematics, artificial life and biology.
Descriptive data or data from any process can be
converted into MIDI data and performed in real-time.
The sounds of cellular automata have been explored
by the author (Eales, 1996), and the sounds of protein
synthesis is described by Dunn (1997). Analysis of the
sound of complex systems may lead to new insights
regarding the organisation of such systems.

5. CONCLUSIONS
MIDI is an extremely versatile protocol due to the
freedom provided by system-exclusive messages.
Dedicated hardware such as the audio patcher-mixer
unit can be designed to operate under MIDI sysex
control. MIDI has been ignored as a development
environment for process-control because of the
absence of error-checking and error-correcting
mechanisms. However, a MIDI link between two
computers provides over a thousand events per
second and has been shown to operate with no event
loss. (Stevens, 1997).

Developing software that uses MIDI to control
hardware or other software is a fascinating experience.
Unfortunately, developing MIDI software from scratch
is a difficult undertaking. Applications that only
require the playback of MIDI files should use the
MCI commands. Application requiring synchronized
output can be developed using the MIDI stream
API. Robust applications requiring input and output
synchronization are forced to use the low-level API.
Accurate timing under Windows95/98 requires a thunk
layer to access the sixteen-bit multimedia subsystem.

The MaxMIDI toolkit developed by Messick (1998)
implements a thunk layer and provides all of the
source code used by the toolkit. Resources such as
the MaxMIDI toolkit and JavaMIDI (Marsanyi, 2001),
solve the non-trivial implementation problems and
provide valuable examples of advanced Windows
programming techniques.

The two application areas of MIDI that were
mentioned provide examples of unusual, innovative
application areas that can be explored using the
MIDI protocol.

REFERENCES
Dunn, J., Clark, M.A. Life Music: The Sonification

of Proteins. Leonardo Online, 1997. Accessed 21
September 2000. <http://mitpress.mit.edu/e-jour-
nals/Leonardo/isast/articles/lifemusic.html>

Eales, A.A. A Windows SurroundSound System
B.Sc.(Hons) Research Project, Rhodes University
Dept. of Computer Science, 1994.

Eales, A.A. Dances of Life: Studies in Cellular-Auto-
mated Music. Part of unpublished M.Mus. Thesis,
University of Pretoria, 1996.

Lehrman, P.D. and Tully, T. MIDI for the Profes-
sional. Amsco Publications, New York, 1993.

Marsanyi, R. JavaMIDI Accessed May 7, 2001.
<http://www.softsynth.com/javamidi/>

MIDI Fanatics Brainwashing Centre Accessed
May 7, 2001. <http://www.borg.com/~jglatt/tech/
winapi.htm>

Messick, P. Maximum MIDI: Music Applications in
C++. Manning Publications, Greenwich, 1998.
also <http://www.maxmidi.com>

Riemersma, T. Synchronizing Animation with
MIDI Audio, 1999. Accessed August 16, 2000.
<http:\\www.compuphase.com>

Rona, J. The MIDI Companion Hal Leonard Publish-
ing, 1994.

Selfridge-Field, E. (ed) Beyond MIDI: The Handbook
of Musical Codes. MIT Press, 1997.

Stevens, A. Space Shuttles, Tomato Cans, and
Teenage Daughters.Dr. Dobbs Journal, vol22 no2,
February, 1997. p.97

Wilkes, A. An Audio Patcher-Mixer. Department
of Computer Science Technical Report.Rhodes

