
41Proceedings of the NACCQ
Napier New Zealand July 2001
www.naccq.ac.nz

These techniques emphasize a specific set of risks
-missed schedule, over budget, and failing to meet
the system’s specified requirements. Nevertheless,
software development has been characterized as a
“software crisis”. A high percentage of software is
being delivered late, over budget, and not meeting
all requirements.

In this paper I correct the meaning of “Software
Failure”, or more precisely, focus attention on some
overlooked meaning of “Software Failure”. Software
fails even though it was produced on schedule within
budget and met the customer’s specified software
requirements. Software has been developed which,
although meeting stated requirements, has significant
negative social and ethical impacts. By ethical impact
I mean those impacts of software which positively
or negatively the circumstances, experiences,
behavior, livelihood, or daily routine of others. The
ethical stakeholders in software are those who are
so affected.

The Aegis radar system, for example, met all
requirements that the developer and the customer
had set for it. The system designer’s did not take into
account the users of the software nor the conditions in

ABSTRACT
The common approach to risk analysis and
understanding the scope of a software project
has contributed to significant software failures.
A process is presented which expands the
concept of software risk to include social,
professional, and ethical risks that lead to
software failure. Using an expanded risk analysis
will enlarge the project scope considered
by software developers. A tool to develop
Software Development Impact Statements is
also discussed.

KEYWORDS:
Project Management, Risks, SoDIS, Ethical
issues

1. INTRODUCTION
Software engineering has been evolving and
refining techniques to help produce software
products that meet the needs of their clients.

Don Gotterbarn
East Tennessee State University

Johnson City, Tennessee, USA
gotterba@etsu.edu

Keynote: Understanding and Re-
ducing Project Failure: The Ethics of

42

which it would be used. The system was a success
in terms of budget, schedule, and requirements
satisfaction, even so, the user interface to the system
was a primary factor in the Vincennes shooting down
an Iranian commercial airliner killing 263 innocent
people.

There are two factors that contribute to these
professional and ethical failures. There is significant
evidence that many of these failures are caused
by limiting the consideration of relevant system
stakeholders to just the software developer and the
customer. This leads to developing systems that
have surprising negative affects because the needs
of relevant system stakeholders were not considered.
In the case of the Aegis radar system the messages
were not clear to the users of the system operating
in a hostile environment. These types of failures
also arise from the developer limiting the scope
of software risk analysis just to technical and cost
issues. A complete software development process
requires the identification of all relevant stakeholders
and broadening the risk analysis to address social,
political, and ethical issues. Software development
processes include a risk analysis process but with
current methods limit the types of risks considered.
The risk analysis is primarily instrumental-addressing
corporate bottom lines. Software projects have
ethical dimensions that need to be identified before
and during the development process. There are some
modifications to the standard development models
that will address these additional types of risk.

There are some techniques that attempt to include
a broader consideration of stakeholders, such
as viewpoint requirements definition. Some of
these software development methods articulate a
distinction between direct system stakeholders—
(those who)”receive services from the system and
send control information to the system”-and indirect
stakeholders— those who “have an interest in some
of the services that are delivered by the system
but do not interact directly with it”. These would
include the passengers on the Iranian airline or the
driver of an automobile whose breaks are controlled
by a computer program. Unfortunately 1) these
methods do not provide a way to reach beyond
identifying those who have a business relation to the
customer. They would not have identified as indirect
stakeholders the 47 people killed by falling debris
from a Patriot missile. These methods also fail to 2)

provide a method of identifying the social and ethical
impacts on the indirect stakeholders.

Barry Boehm’s has developed a methodology
which comes close to meeting the first factor, the
stakeholder identification problem. His Win-Win
spiral software development technique is used to
elicit project requirements for all stakeholders. At
each phase of a project’s development the analyst
identifies the stakeholders for that stage, determines
the win conditions for each new stakeholder, and
then negotiates to have these new win condition
requirements fit into a set of Win-Win conditions that
have already been established for all concerned.
There is a set of win conditions for the Aegis radar
customer. These conditions would be identified and
a process developed to meet those conditions. Then
new stakeholders would be identified, for example
the sailor’s using the system on the Vincennes, and
their win conditions would be identified. They would
consider it important to be able to clearly determine
if an approaching aircraft were hostile. This win-
condition would be incorporated, via negotiation, into
the existing process plan. There is no methodology to
identify ethically relevant stakeholders nor is there an
ethical foundation for the negotiation process.

The method is also limited in that it assumes all
stakeholders are equal and that they will equally
be aware of and able to describe their own win
conditions. The negotiation amongst stakeholders
will be unjust and will likely lead to a failed systems,
unless, contrary to fact, each stakeholder has such an
equal identification and descriptive skill of their own
win conditions. There is also an implicit assumption
that all requirements are negotiable. As the method is
constructed, all requirements have equal status-none
are rejected because they are morally impermissible
or required because they are morally mandatory.

The major portion of the paper develops a methodology
to help software engineers address the ethical issues
that lead to failed systems. The methodology
contains a technique for stakeholder identification
and an approach to ethical analysis in software
development that avoids many difficulties with
business ethics methods of stakeholder identification
that fail to capture requirements that emerge from
the relationship between stakeholders. The goal of
the method is to help the software engineer identify

43

all of the ethically relevant stakeholders and provide
structure to the process through a series of ethics
principles.

Software, which has been developed to test the
feasibility of this method, will also be presented.

2. CURRENT BEST? PRACTICE
Current software project management techniques
are used to develop and deliver various types of
software products. In developing a software project
management plan decisions are made about technical
issues such as: a) which software development
methodology to use, b) which cost and estimation
techniques to use, c) how to reduce risk, and e) which
programming development environment to use. The
software project management plan is used to control
all aspects of the software development process.

The literature is rife with stories about systems
that failed, some which merely inconvenience
people or cost money, while others are much more
significant. There are some wonderful examples of
software failures. Recall the infamous example of the
Australian Department of Defense’s reuse of code
from an infantry simulation program to model the
movement of kangaroos disturbed by approaching
helicopters. The simulation worked to show the
kangaroos running for cover as the helicopter
approached, but it also continued with the infantry
model and showed the kangaroos regrouping and
coming back over the hill armed with bazookas and
missile launchers attacking the disruptive helicopter.
This was simulation but code does get used in real
applications which are not so humorous. A New
Jersey inmate under computer-monitored house
arrest removed his electronic anklet. “A computer
detected the tampering. However, when it called
a second computer to report the incident, the first
computer received a busy signal and never called
back.” [Joch] While free, the escapee committed
murder. In another case innocent victims were shot
to death by the French police acting on an erroneous
computer report[Vallee].

2.1 Bad Science
We do not try to produce failed software. What is
the problem? We are told that part of the problem is
the nature of software development. We are forced
to set milestones before we fully understand the
requirements. So we develop techniques to focus
on the requirements, the technical documentation
for functional requirements of a system. We can
even describe these requirements with mathematical
rigour. But we do not address anything beyond their
technical feasibility. We have developed an alphabet
soup approach to address these problems. We have
the CMM, the PSP and the TSP. These are directed
at broad long term needs of software developers
and software development and directed at improving
productivity and efficiency. Soon we will have ESP.
The problem is that we apply these methods with
the best intentions and we still have failed projects.
Bad science is described as repeating the same
experiment over and over and expecting different
results. We are appalled when students simply
recompile code over and over without making any
changes in the hope that doing it one more time will
change something. Bad software development is
applying the same methods of software development
and risk analysis over and over and expecting
different results.

2.3 Failure Research
What does failure research say is wrong? There are
numerous infamous cases of software failure. There
are multiple causes of these failures, but they did
have at least on common elements. Recent research
has confirmed that inadequate identification of project
stakeholders and how they are affected by a project
is a significant contributor to the project’s failure.
Establishing the right project scope is essential in
defining project goals. The stakeholders determine
the scope of consideration. Normally, the stated needs
of the customer are the primary items of concern in
defining the project objectives. Investigating 16
organizational IS-related projects led [Farbey et al,
1993] to conclude that regarding evaluation of IT
investment, “... the perception of what needed to
be considered was disappointingly narrow, whether
it concerned the possible scope and level of use of
the system, [or] the range of people who could or
should have been involved ...”. They discovered, with
the exception of vendors, all stakeholders involved
in evaluation were internal to the organizations. The

44

reason for this restricted involvement is that these
are the only stakeholders originally identified in the
traditional project goals or system requirements. We
should not limit our consideration of stakeholders
to those who are financing the project or politically
influential. Stakeholders are individuals or groups
who may be directly or indirectly affected by the
project and thus have a stake in the development
activities. Those stakeholders who are negatively
affected are particularly important.

Negative effects include both overt harm and the
denial or reduction of goods. So obviously the
development of medical software that delivers
erroneous dosages of medicine that killed patients
would have a negative effect; but we would also
include as having a negative effect software that
limited people’s freedom of expression. Limitations
on positive ethical values and rights are negative
effects.

Many companies have gone out of business because
they have only emphasized short term efficiency and
productivity. The quantity and cost of major product
recalls in terms of dollars and company reputation
are evidence of this mistaken emphasis on short
term goals. When considering software development
we need to consider the impact of the system as a
whole. In the past, the developers have restricted
their involvement in the development of a product
to the technical elements of a piece of software.
This self-imposed limitation has contributed to the
development of software that has been inferior and
has had negative consequences for others: software
that is not socially sensitive. The systems we develop
perform tasks that affect other people in significant
ways. The production of quality software that meets
the needs of our clients and others requires both the
carefully planned application of technical skills and
a detailed understanding of the social, professional,
and ethical aspects of the product and its impact on
others.

Frequently the failure to consider social, ethical, and
other risks has led to the delivery of unacceptable
software that should be recalled and modified.
Because the process of recall and modification is
too expensive for the developer, the product remains
on the market. The scope of a project needs to be
identified in terms of its real stakeholders.

The expansion of the scope of a project to include
all relevant stakeholders will also broaden the types
of risks considered. Many companies have gone
out-of-business because they have only emphasized
short-term efficiency and productivity. The quantity
and cost of major product recalls in terms of dollars
and company reputation is evidence of this mistaken
emphasis on short-term goals. When considering
software development we need to consider the
impact of the system as a whole. In the past, the
developers have restricted their involvement in the
development of a product to its technical elements.
This self-imposed limitation has contributed to the
development of software that has been inferior and
has had negative consequences for others. The
systems we develop perform tasks that affect other
people in significant ways. The production of quality
software that meets the needs of our clients and
others requires both the carefully planned application
of technical skills and a detailed understanding of
the social, professional, and ethical aspects of the
product and its impact on others.

We need to extend the traditional software project
stakeholder list from customers and corporations
or shareholders to include all those who will be
affected by the software and by its production. This
enlargement of the domain of stakeholders has been
implicitly endorsed by professional societies in the
paramouncy clause — “ Protect public health, safety,
and welfare” in their codes of ethics. This extension
has been explicitly adopted in several legal decisions
in the United States. This extended domain of
stakeholders includes: users of the software, families
of the users, social institutions which may be radically
altered by the introduction of the software, the
natural environment, social communities, software
professionals, employees of the development
organization and the development organization itself.
Given such a range of stakeholders, how is one ever
to learn how to identify the relevant and significant
stakeholders?

3. RISK ANALYSIS WITH SOFT-
WARE DEVELOPMENT IM-
PACT STATEMENTS

Funded research has been done on the development
of a risk management process employing software
development impact statements. The Software

45

Development Impact Statement (SoDIS), a
modification of an environmental impact statement,
is a way of addressing the need to modify project
tasks in a formal way. A SoDIS, like an environmental
impact statement is used to identify potential negative
impacts of a proposed project and specify actions that
will mediate those impacts. A SoDIS is intended to
reflect both software development process and the
more general obligations to various stakeholders.
Although all software projects have some unique
elements, there are significant similarities between
projects so that a generic practical approach can be
taken to refocus the goal of a project to include a
consideration of all ethically relevant stakeholders as

well as all technically relevant stakeholders.

The process of developing a SoDIS encourages the
developer to think of people, groups, or organizations
related to the project (stakeholders in the project) and
how they are related to each of the individual tasks
that collectively constitute the project.

We can divide software project development into
three distinct phases. They are: the Feasibility phase
that includes considerations of preparedness to
start a project and managing action items needed
to start the project; the Requirements Phase that
defines the specifications of a system and identifies

Figure 1:
The Analysis Phases

46

and manages potential risks with each requirement;
and the Detailed phase that uses a detailed software
project management plan to manage each task on
system development. Each of these phases has its
own peculiar risks. The purpose of the SoDIS Project
Auditor is to identify these risk in a pre-audit of each
phase.

In the Requirements phase, we can develop a high
level analysis of the expected impacts of a project. A
detailed SoDIS is developed from a preliminary Gantt
chart. The goal of the SoDIS process is to identify
significant ways in which the completion of individual
tasks may negatively affect stakeholders and to

identify additional project tasks needed to prevent
any anticipated problems.

4. THE SoDIS PROCESS
On a high level, the SoDIS process can be reduced
to four basic steps: (1) the identification of the
immediate and extended stakeholders in a project, (2)
the analysis of the tasks or work breakdown packages
in a project, (3) for every task, the identification and
recording of potential ethical issues violated by the
completion of that task for each stakeholder, and (4)
the recording of the details and solutions of significant
ethical issues which may be related to individual
tasks and an examination of whether the current task
needs to be modified or a new task created in order

Figure 2:
WBP Detail Screen

47

to address the identified concern.
To aid with the major clerical task of completing this
process for every task and for every stakeholder a
tool - the SoDIS Project Auditor - was developed.
The SoDIS Project Auditor keeps track of all decision
make about the impact of project tasks on the relevant
project stakeholders and it enables a proactive way
to address the problems identified.

4.1 Work Breakdown Structure
Most software project management models proceed
by decomposing the project into component tasks
called “work breakdown packages” that only
address the technical issues. These individual task
descriptions are used in the reviewing and monitoring
of the project. All of these tasks are ordered in a
hierarchy of dependency on one another.

Each of these individual tasks may have significant
ethical impact. The specific SoDIS is used to help the
developer responsibly address the ethically loaded
potential of each work breakdown package. This is
accomplished by including a SoDIS analysis in the
standard descriptive elements of a work breakdown
package (figure 2).

The SoDIS analysis process also facilitates the
identification of new tasks or modifications to existing
tasks that can be used as a means to mediate
or avoid identified concerns. The identified tasks
need to be incorporated into the software project
management plan. The early identification of these
software modifications saves the developer time and
money and leads to a more coherent and ethically
sensitive software product. This phase of the SoDIS
process is a pre-audit of a detailed project plan that
is developed late in a software development life
cycle.

4.2 Stakeholder Identification
A preliminary identification of software project
stakeholders is accomplished by examining the
system plan and goals to see who is affected and
how they may be affected. When determining
stakeholders, an analyst should ask: Whose
behavior, daily routine, work process will be affected
by the development and delivery of this project;

Whose circumstances, job, livelihood, community
will be affected by the development and delivery of
this project, and whose experiences will be affected
by the development and delivery of this product. All
those pointed to by these questions are stakeholders
in the project.

Stakeholders are also those to whom the developer
owes an obligation. The imperatives of the Software
Engineering Code of Ethics and Professional Practice
and similar codes define the rights of the developer
and other stakeholders. These imperatives can be
used to guide the stakeholder search. The process of
identifying stakeholders also identifies their rights and
the developers’ obligations to the stakeholders. Many
of the computing codes have similar imperatives.
These have been reduced and categorized under
five general principles in the SoDIS process and
incorporated into the SoDIS Project Auditor.

The SoDIS process also includes a consideration of
other phases of an SDLC. Some risks can be identified
when a project is first conceived or can be identified
at an intermediate stage when the customer’s desires
are being specified in the requirements phase. The
SoDIS Project Auditor also provides a pre-audit for
these two project phases.

A complete SoDIS process 1) broadens the types of
risks considered in software development by 2) more
accurately identifying relevant project stakeholders.
The utilization of the SoDIS process will reduce the
probability of the types of errors identified by Farbey.
The SoDIS should be part of a SDLC.

The identification of stakeholders must strike a
balance between a list of stakeholders that includes
people or communities that are ethically remote
from the project, and a list of stakeholders that only
includes a small portion of the ethically relevant
stakeholders. Rogerson & Gotterbarn had proposed
a method to help based on Gert’s moral rules [Gert
1988]. Gert gives 10 basic moral rules. [Gotterbarn
1991] These rules include: Don’t kill, Don’t cause
pain, Don’t disable, Don’t deprive of freedom, Don’t
deprive of pleasure, Don’t deceive, Don’t cheat,
Keep your promises, Obey the law, and Do your duty.
These rules carry with them a corresponding set of
rights such as the right to liberty, physical security,

48

 Customer Developer User Community A d d i t i o n a l
stakeholders......
Req\Stakeholder
Requirement 1 N N N N
Requirement 2 N N N Y
Requirement 3 Y N Y Y

Figure 3:
Stakeholder Identification

Might the completion of this requirement cause harm to the stakeholder? (‘Y’ indicates that the task
may cause harm to the stakeholder group)

49

personal liberty, free speech, and property. How can
these rules be used to identify stakeholders?
A matrix can be set up for each ethical rule such
as “Don’t cause harm.” The column headers of the
“Don’t cause harm matrix” are the stakeholders, such
as the “developer” and the “customer”, and there
is a row for each major requirement. The SoDIS
analysts then visits each cell in the matrix asking, for
each requirement whether meeting this requirement
violates that obligation to the stakeholder. Because
the analysis as described is organized by particular
software requirements, it will be easy to identify those
requirements which generate a high level of ethical
concern. Thus, the list will also be used to determine

if particular requirements have to be modified to avoid
significant ethical problems. This method can be used
at this stage to give a composite picture of the ethical
impact of the entire project from the point of view of
these stakeholders.

This process is now used to both identify additional
stakeholders and to determine their rights The first
phase of the stakeholder identification should have
identified some areas of broader ethical concern
and some additional stakeholders. The primary
stakeholder analysis is repeated for these newly
identified stakeholders. Even if there were no new
stakeholders identified, at a minimum the analysis
should include software users, related cultural

Figure 4:
SoDIS Analysis screen

50

groups, and society as potential stakeholders.
The system provides a standard list of stakeholders
that are related to most projects. This standard list
of stakeholder roles changes with each change of
project type. For example, a business project will
include corporate stockholders, while a military
project will not have stockholders as a standard
stakeholder role. The system also enables the SoDIS
analyst to add new stakeholders roles.
The stakeholder identification form (figure 2) contains
a Statement of Work that helps remind the analyst
of the project goals and facilitates the identification
of relevant stakeholders. The stakeholder form and

the SoDIS analysis form are dynamic and enable the
iterative process. If while doing an ethical analysis,
one thinks of an additional stakeholder he/she can
shift to the stakeholder identification form , add the
stakeholder , and then return to the SoDIS analysis
which will now include the new stakeholder.

4.3 Ethical Obligations
This stakeholder identification process has been
modified in the SoDIS Project Auditor. Gert’s
ethical principles have been combined with ethical
imperatives from several computing codes of ethics
to reflect the professional positive responsibility

Figure 5:
Concern /Solution Screen

51

of software developers. These principles have
been framed as a set of 32 questions related to
stakeholders in a software project, and to generalized
responsibility as a software professional.

There may be some special circumstances that are
not covered by these 32 questions so the system
enables the SoDIS analyst to add questions to
the analysis list. When the analysis is complete
there are several usage statistics reports that give
various snapshots of the major ethical issues with
the project.

When an ethical concern has been identified, the
analyst gets an ethical concern form which asks the
analyst to record their concern with the task and
record a potential solution. The most critical part
of this process is on this form, where the analyst is
asked to assess the significance of their concern with
the work breakdown package being analyzed. If the
problem is significant then they have to determine
whether the problem requires a modification of
the task, deletion of the task from the project, or
the addition of a task to overcome the anticipated
problem. It is these adjustments to the software
requirements or management project plan that
complete risk analysis.
The process of developing a SoDIS requires the
consideration of ethical development and the ethical
impacts of a product — the ethical dimensions of
software development. The SoDIS analysis process
also facilitates the identification of new requirements
or work breakdown packages that can be used as a
means to address the ethical issues. The identified
work breakdown packages need to be incorporated
into the software project management plan. The early
identification of these software modifications saves
the developer time and money, and leads to a more
coherent and ethically sensitive software product.

CONCLUSION
The SoDIS process facilitates the expansion of
software risk analysis to reduce software failures.
Using this pre-audit process in test in the UK and
the USA facilitated the early identification of project
risks. Using a SoDIS process will make producing
software of high quality and producing software that
is ethically sensitive second nature to the software

engineer.

This research was partially funded by NSF Grant
9874684

REFERENCES
Collins W R, Miller K W, Spielman B J and Wherry

P (1994) How Good is Good Enough, Commu-
nications of the ACM, Vol 37 No 1, January, pp
81-91.

Farbey B, Land F and Targett D (1993) How to
assess your IT investment, Butterworth Hein-
emann.

Gert B (1988) Morality, Oxford University Press.
Gotterbarn D (1991) Computer Ethics: Responsibil-

ity Regained, National Forum, The Phi Kappa Phi
Journal, Vol 71 No 3.

Gotterbarn D (1999) “Promoting Ethical responsibil-
ity in Software Development,” Proceeding of the
AICE Computer Ethics Conference

Gotterbarn D and Miller K and Rogerson S (1999)
Software Engineering Code of Ethics, Communi-
cations of the ACM. 1998

http://computer.org/computer/code-of-ethics.pdf
Green R M (1994) The Ethical Manager, Macmillan

Publishing.
Joch A (1995) “How Software Doesn’t Work,”

Byte, December 1995 pp 48-60.
McCarthy J (1996) Dynamics of Software Develop-

ment, Microsoft Press.
O’Connell F (1994) How to run successful projects,

Prentice-Hall.
Rogerson S and Gotterbarn D (1998) “The Ethics

of Software Project Management”, in Ethics and
Information Technology, ed. Göran Collste, New
Academic Publisher, Delhi, 1998

Vallee J (1982) The Network Revolution, Berkeley:
And/Or Press 1982).

52

