
���

P
ro

ce
ed

in
g

s 
o

f 
th

e 
15

th
 A

n
n

u
al

 N
A

C
C

Q
, H

am
ilt

o
n

 N
ew

 Z
ea

la
n

d
 J

u
ly

, 2
00

2 
w

w
w

.n
ac

cq
.a

c.
n

z

���

!�7�(�����E��	
����(����0�2�����

system or database management system. With
flexidata, there is an intermediate level. We hold some
of the metadata on tables and allow it to be seen and
manipulated as though it were operational data.

The point of doing this is to defer decisions about
what the operational data will really look like.

Two examples are described. The first involves
using flexidata to defer decisions during the design
phase of a large and complex development project in
which the user requirements are unusually volatile.
The second involves a system in which tables of
metadata are provided to the user to allow the
operational data to be stored in new formats after
implementation.

Metadata is an active research area, but the current
focus is on mark-up languages, where text and
formatting instructions are bundled together in the
same document only to be channelled to different
destinations: the text to the end-user, the metadata to
the processing software. The concerns of this paper,
which are to displace metadata from its usual context
in order to automate the production of forms or to
expose it to the user directly in the interests of flexibility,
do not seem to be recognised as design strategies.

��1�(�,��	�
.1�	�,��)�	��	

Massey University at Wellington
Wellington, New Zealand

D.Warner@massey.ac.nz

ABSTRACT
Two innovative and contrasting ways of

using metadata are described. One involves
keeping metadata in an Excel spreadsheet
during the design phase of an application
system for a government agency so that a
complex and volatile set of features can be
managed. The other involves a museum
collections case study in which metadata is
made available to the end users as operational
data so that the functionality of the system can
be expanded after implementation. The
advantages and limitations of each approach
are discussed.

Keywords: Metadata, case studies.

1. INTRODUCTION
In this paper, we use ‘flexidata’ to refer to

metadata that is stored and used in the same
way as ordinary operational data.

Flexidata can be thought of as either a
lower level of metadata or a higher level of
operational data.

Normally, we hold operational data on
tables and the data that describes this data,
the metadata, is looked after by the operating



���

2. DEFERRING PRE-
IMPLEMENTATION
DECISIONS

Flexidata was used to ease the problems in a
particular case where new legislation very
substantially increased the requirements for an
existing risk management system application that was
deemed to be un-maintainable. The new
requirements involved a large increase in the scope
and complexity of the system. The business had to
develop new processes in parallel with the
development of the supporting application.

2.1 REQUIREMENTS AND
DESIGN APPROACH

The design approach was required to allow end-
users to contribute to the design of the application in
a situation where the user requirements and methods
of calculation were being developed in parallel with
the application.

The implementation was to use SQL Server with
a front-end using Visual Basic.

The form layout was to be consistent across all of
the forms. Although the forms were all different, any
similarities were to be exploited to give a uniform look
and feel to the application.

Further requirements that influenced the design
but were not directly associated with the decision to
use the flexidata approach were that the database
be temporal and that, within a session, there should
be limitless undo and re-do. As the database is used
to support New Zealand legislation there is a need to
track all changes made in the data and to examine
and compare the state of the database at points in
the past.

2.2 SCALE
39 forms are required to define the input

information to the application, 667 fields are used to
contain that information, and 155 of these fields are
memo fields (Further fields in the database are used
for derived information and status information).

2.3 APPROACH
Users and the application developer jointly

examined the data requirements and the calculation
processes and defined the forms required and the
layout for each form.

The forms were implemented and the results
reviewed by the team. An iterative process of review
and change was followed.

2.4 FORESEEN PROBLEMS
Keeping the form layouts consistent and changing

the forms was expected to be a major undertaking. It
transpired that, over the development period, the
number of fields and the number of forms doubled
and it was necessary to split or combine many of the
forms.

It was expected to be difficult to keep the look and
feel of the application consistent, (e.g. all combo
boxes should work in the same way) and difficult if a
change of behaviour for a control was required.

2.5 MANAGING THE PROBLEMS
To manage the foreseen problems it was decided

to automate the generation of forms. Some thought
was given to containing the form descriptions in a
database, but it was decided that for ease of
management it would be sensible to use Excel to allow
the use of formulae and cut-and-paste functions.

An example of the use of formulae is that in many
cases the height and spacing of controls is calculated
from a knowledge of the number of controls and the
space into which they need to be fitted, often itself a
function of the form’s height. If a control is added or
deleted the others are automatically re-positioned to
take account of the change.

The solution developed documents all parameters
associated with the forms. These include, for each
form:

♦ The name
♦ The title
♦ The menu items available
♦ The controls on the form and their positioning.

The information stored for each control varies
according to the type of control and is a sub-set of
the following:

♦ Type (list follows)
♦ Caption or field name
♦ Size
♦ Position
♦ Tool tip
♦ Template (i.e. allowable data formats).



���

The controls used are all standard VB controls,
but several formatting variations may be used. The
control types used include:

♦ A normal right-justified 8 point label
♦ A normal left-justified 8 point label
♦ A bold left-justified 8 point label
♦ A normal right-justified 12 point label
♦ A normal left-justified 12 point label
♦ A bold left-justified 12 point label
♦ Text box
♦ Read-only text box
♦ List box
♦ Combo box (combo box entries may be limited to

those appearing in the list, or not.)
♦ Check box
♦ Read-only check box
♦ Editable rich text box
♦ Non-editable rich text box
♦ Button
♦ Microsoft flexgrid.

Controls may be specified to be loaded with literal
data (defined in the spreadsheet) or from the
database.

2.6 EXTRACTION OF METADATA
An Excel VBA program scans the form definition

spreadsheet and builds a set of tables to allow the
application to dynamically generate the forms, with
controls, as required. The form definition data is
stored in the same SQL database as the application’s
data.

The VBA program also generates a list of all the
property fields used to define the field IDs in the
database.

2.7 USE OF METADATA.
A module within the application reconfigures a

single form according to its description retrieved from
the database. The user perceives this form as being
one of some 39 forms.

Navigation between these perceived forms is via
the form’s menu bar. The normal menu keyboard
short cuts are also available to the user.

Menu items are pre-configured but may be hidden
or shown under instruction from the form description,
allowing a context-controlled menu bar.

When a form image is generated, the application
retrieves the parameters required for the fields on
that form, including references to the field names,
where appropriate. Field data is accessed from the
database via a cache, held within the application. The
cache implements the undo and re-do feature and
ensures that only modified data is written back to the
database.

2.8 DOES IT WORK?
The tools used are shown in figure 1.

Does the approach work? Yes, it does.

It was gratifying to see changes reflected
automatically across the entire application. This
allowed the designer to respond quickly to the needs
of the user and readily demonstrate the effects of
proposed changes.

Use of the flexidata approach encouraged a
uniformity which flows through to the appearance of
the final forms.

For example, when it was decided that all rich text
fields should be implemented so that when double-
clicked an editing window would open as soon as the
change was made, all rich text boxes behaved
identically.

Quite often, it was possible to make substantial
changes to a form by updating its metadata, aided by
the use of calculated values within the spreadsheet,
and to see the results within a couple of minutes.

The names for the Visual Basic controls were
initially generated from labels (or captions) in the
metadata, as were the database field names. This
allowed the reconciliation of field names between
forms and eased data migration from the old
database. It has also been much more fun developing
software this way: developing tools is more enjoyable
than performing repetitive tasks.

����
������
����	���
�����������	
���������������



���

2.9 CAN IT BE IMPROVED?
The format of the metadata, as stored by the

database, could be enhanced to support the dynamic
re-sizing of forms. In this case, a decision was taken
to restrict the number of forms used at the expense
of placing a large number of controls on each form
and mandating the use of full-screen forms at 1024 x
768 resolution on a 17” screen.

A “macro” facility would be useful within the
spreadsheet to allow commonly occurring
configurations of VB controls to be defined once only,
then re-used as required. The present spreadsheet
achieved the same effect by using formulae and cut-
and-paste techniques.

3. DEFERRING POST-
IMPLEMENTATION
DECISIONS

So far, we have seen how flexidata can be used
to regenerate design elements during system
development and thus reduce the impact of volatile
user requirements. In the remainder of this paper,
we examine some of the ways in which flexidata can
be incorporated into a completed system to make it
more versatile.

3.1 A SIMPLE EXAMPLE
A simple example of this is to allow the user to

change the way in which data elements are described.
For example, in a system that maintains contact
details, a contact can belong to any of five different
categories. On the database, these are named

Category1 through to Category5. Users provide their
own descriptions of these categories and the system
uses the descriptions, not the field names, when
displaying the contents. Figures 2 and 3 show how
the category names might be set up by two different
users of the same software.

3.2 A SOPHISTICATED EXAMPLE
A more sophisticated example of making

metadata available to the users without requiring them
to master a full-blown data definition language is
provided by COLLECTION, the PC-based museum
package developed by Vernon Systems Limited in
Auckland.

Each of the system’s main tables includes twenty
pre-loaded fields of varying types which the user can
then name and maintain as needs arise.

In addition, a field name override facility allows
any field in the system to have its displayed description
changed by the user.

Twenty symbolic fields are provided whose
contents are calculated as the result of an expression
and displayed on a report. This allows, for example,
an age to be calculated as the difference between
the current date and a birth date.

3.3 TRYING FOR EVEN
GREATER FLEXIBILITY

While the features in COLLECTION described
above are sophisticated, they do not allow the number
of available fields to be altered by the user. Rather,
they allow existing fields to be variably described and
new results to be reported that are calculated from
previously stored values.

!�
���%��E��*(��	(����(�(��������	��K
���
����(��������	��������
��(�����	

�������

!�
���:��E��*(��	(����(�(��������	��K
����������
��������(����2(�2���	

1	����������



���

Is it possible to design systems in such a way that
the user can change some of the basic design
elements without the intervention of a software
developer?

The answer depends on the toolset available, but
even if it is “yes”, one should not assume that doing
so would be a good idea. At its limit, the strategy of
allowing users to modify their own metadata results
in developing DBMS and CASE tool features for every
installed system, features that are triggered by the
user but which act automatically to modify the
system’s data structures and generate the necessary
maintenance and reporting routines.

Sensible decisions will always involve a tradeoff
between the flexibility required by the user and the
extent to which sophisticated software should be
provided to cater for possible future extensions. At a
certain point, it becomes cheaper and easier to wait
until the demand for a new feature arises and then
ask the developers to prepare a new version of the
software. Totally future-proof systems, even if they
are possible, are not likely to be good value for money.

 A new case study developed for third-year degree
students at Massey University requires them to make
just such a tradeoff. The scenario is coincidentally
similar to the COLLECTION system mentioned
above. In a museum collections management system,
the user would like the ability to define and implement
new sub-collections without having to commission a
new version of the software each time.

The problems the student must address include:

♦ What data types are available and how are they
selected? This is very dependent on the toolset
being used. The programming language has its
own set of recognised data types, the database
may have another, and the technique used to
create new data structures from within the program
code, such as embedded SQL commands, may
cater for some of these but not others.

♦ How will fields in a new sub-catalogue be defined
and allocated? Presumably, the same field may
occur in more than one sub-catalogue, so field
definitions should be reusable.

♦ How will the system validate the name of each
new sub-catalogue? Names must be unique, so
the system must have some way of knowing
whether a name has been used already.

♦ Once a new data structure has been created, how
will its contents be maintained? This is probably

the most challenging issue and is sure to influence
the answer to the next question, which is:

♦ What limits, if any, will be placed on how many
sub-catalogues can be generated and how many
fields each one can contain?

♦ How will the menu structure accommodate the
new software routines associated with each new
sub-catalogue?
A model answer has been developed to help

anticipate the extent to which students can be
expected to solve these problems. A toolset of Visual
Basic and Access was used.

Writing the software for adding new tables
dynamically proved relatively straightforward.
Because SQL statements can be embedded in Visual
Basic code, changes to the data structure can be
made in response to user preferences.

Some difficulties were encountered, however.
Firstly, the data environment did not seem to tolerate
variable table names in a CREATE TABLE statement,
so the SQL commands had to be embedded in the
code rather than stored in the environment. Secondly,
the INTEGER keyword produced a LongInt field in
the database instead of an Integer, and thus had the
same effect as LONG. Thirdly, although a length could
be specified for a TEXT field, neither length nor
precision could be specified for numeric fields.

!�
#�3��������*(��	����	������	����2*
������
�



���

Figure 4 shows how the user assigns fields to a
new sub-catalogue. The fields themselves are defined
by the user too, but separately to allow for reuse.

Providing customised tables on demand is not
much use, however, unless they are accompanied
by software for maintaining data on them, and this is
likely to be the most challenging part of the job.

Visual Basic provides two techniques for
dynamically adding and removing controls at runtime:
using control arrays and using the methods of a form’s
Controls collection (Bradley and Millspaugh 2001, ch.
2). The second of these is more elegant because
new controls can be created ex nihilo, as it were,
without having to include a hidden template for each
type of control that is added. This does not work for
forms or menus, however. They need a template from
which new instances are cloned as required, each
identified by its own index value.

These techniques allow the feature of user-defined
sub- catalogues to be coded tolerably easily, but only
as long as the maintenance requirements of each
can be inferred from the metadata of its table. If this
could not be relied upon, hard-coded exceptions
would be needed and the benefits of flexidata would
begin to erode.

4. CONCLUSIONS
We have considered two ways in which metadata

can be used as though it is operational data and have
termed this “flexidata”.

The pre-implementation use allows form layouts
to be regenerated each time a change is requested
by the design team, and its benefits are uniformity
and speed. Desirable extensions of this approach
were identified, but it suffers from no inherent
disadvantages.

The post-implementation use provides the end
user with flexibility as its big advantage, but the
method is inherently limited. Maintenance forms,
although they are generated automatically, have to
follow the same pattern of layout and controls. To
avoid the feature becoming a patchwork of special
cases, no special processing features are provided
for particular sub-collections. Also, the data types
available are limited to those common to the
programming language and the database
management system.

ACKNOWLEDGMENTS
We would like to thank our colleagues in the

Information Systems department of Massey
University at Wellington, especially Errol Thompson
and Tony Powell, for their help in exploring the
dynamic creation of menus, forms, and controls in
Visual Basic.

REFERENCES
Bradley, Julia Chase and Millspaugh, Anita C.

(2001). Advanced Programming in Visual Basic
6.0, McGraw-Hill.


