
���

P
ro

ce
ed

in
g

s
o

f
th

e
15

th
 A

n
n

u
al

 N
A

C
C

Q
, H

am
ilt

o
n

 N
ew

 Z
ea

la
n

d
 J

u
ly

, 2
00

2
w

w
w

.n
ac

cq
.a

c.
n

z

���

&���A������0���������	��	
���
0�		�	� �������

management system and allowing natural history
items to be tagged with references to an element
anywhere within that hierarchy.

A note on spelling: although “Linnaean” is closer
to the surname of the Swedish naturalist Carolus
Linnaeus (1707-78) who did much of the pioneering
work on the classification of organisms, “Linnean” is
more commonly found in the scientific literature and
is preferred here.

1.2 HORIZONTAL STRUCTURE -
TAXONOMIC LEVELS

The Linnean hierarchy is typically represented as
a two-dimensional structure showing taxonomic level
in the horizontal dimension and order of emergence
in the vertical (fig. 1).

.1�	�,��)�	��	

Massey University
Wellington, New Zealand

K.J.Wilkinson@massey.ac.nz

ABSTRACT
Although the Entity-Relationship approach

may seem like an obvious one for
implementing the Linnean hierarchy in a
museum collections management system, in
fact a more successful approach involves
holding the data in a single table with a
supporting table defining the taxonomic levels.
Using a standard viewing component such as
the Microsoft Windows TreeView then
becomes attractively feasible. A general form
of this solution is derived that can be applied
to other kinds of hierarchies.

1. THE TASK

1.1 A DEMANDING CASE STUDY
A third-year case study requires students

to prototype a museum collections
management system. Each student’s solution
must include one of a number of quite
challenging features.

Elsewhere, I discuss the feature of allowing
new sub-catalogues to be defined without any
reprogramming. Here, the feature dealt with
is implementing the Linnean taxonomy of living
organisms as part of the collections

!�
���"�����(��	���	��������0�		�	
��������

���

One of the first things a student should recognise
is how different two implementations of the hierarchy
can be. Even which categories should appear in the
horizontal dimension are not fixed. A simple scheme
might require only the seven main ones, which are

Kingdom

Phylum

Class

Order

Family

Genus

Species

For most purposes, however, this structure is too
limited and intermediate ranks have to be introduced
using prefixes such as super, sub, and infra. Thus,
for example, one might find a hierarchy with the
phylum and class levels expanded to

...

Phylum

Subphylum

Superclass

Class

Subclass

Infraclass

...

Clearly, some design decisions are called for to
allow this sort of flexibility and to manage the extent
to which categories can be changed once
implemented.

1.3 VERTICAL STRUCTURE -
EMERGENCE

Even if one went to the trouble of sorting all the
sub-phyla of vertebrates alphabetically, the result
would not be acceptable. What is needed is an
ordering that reflects evolutionary history, such as
Agnatha, Sharks and rays, Bony fish, Amphibians,
Reptiles, Birds, and Mammals.

Order of emergence is a matter of academic
opinion and, because this can change, the user must
be able to determine the sequence flexibly. This
includes being able to promote or demote an item
without having to delete and reenter it.

The challenge facing the student is that nothing in
the data the user wishes to enter determines the

correct vertical order, yet the software must have
some way of returning the list to the sequence in which
it was left after the previous maintenance session.

1.4 MAINTAINING THE HIERARCHY
As implied by the above discussion, the user must

have the ability to insert new items and to change or
delete existing ones . The horizontal (taxonomic) level
should be variable. It should also be possible to initially
position, and later promote or demote, an item in the
vertical order of emergence.

While this is easy enough to say, there are plenty
of interesting issues involved in carrying out the
requirement, such as how to handle jumps in the
sequence and how to treat the first and last items in
the hierarchy.

The number of taxonomic levels will not be large,
so their selection can be managed conveniently by a
pick list of the available options. With the order of
emergence, however, there is no set of predefined
options that can be presented, so the system has to
provide a way of recording where an item is when
maintenance of the hierarchy is finished.

1.5 USING THE HIERARCHY
Interesting though it be, the Linnean hierarchy is

not maintained for its own sake. It is in the system to
allow biological field specimens to be classified by
being linked to a position in the hierarchy.

Once this is done, the higher taxonomic levels
must be displayed. To make life easier for the user,
and also to guarantee consistency, this is best done
automatically using the hierarchy itself rather than
manually.

For example, any item classified as Aardvark
should be analysed as shown in fig. 2.

This assumes, of course, that the user wants
consistency. If the system has to cater for inconsistent

!�
���%��&	��	������������
�����7�	����
�1��

���

analyses of the same type of item by different
classifiers, each collection record will have to carry
its own hierarchy of higher levels.

2. THE ENTITY-RELATIONSHIP
APPROACH

The natural way to approach any data analysis
task involving a hierarchy is to think in terms of entity-
relationships. After all, chains of ONE:MANY
relationships are precisely what that approach is
designed to handle. However, the E-R route leads to
some formidable obstacles, any one of which might
force a change of tactic and the combination of which
is a gruesome prospect indeed.

2.1 ENTITY COUNT
The first problem is that the entity count may vary

from 7 to about 17 depending on the user’s
requirement for taxonomic levels.

Even if the number can be fixed during the design
phase, the idea of a chain of 17 (or even 7) tables
linked by foreign keys is not appealing.

Allowing the flexibility of adding new levels
dynamically would require the creation of new tables
and the breaking and remaking of relationship links
from within the software. This would in turn require
the automatic respecification of all the queries (sub-
schemas) involving those tables and relationships.

2.2 TAXONOMIC GAPS
Even if the entity count problem were overcome,

allowing for gaps in the hierarchy would be another
major challenge.

Living organisms belong to an irregular hierarchy.
Not every item belonging to a particular level has the
same pattern of higher abstraction. For example, the
class Agnatha would need to link upwards to a record
on the sub-phylum table and from there to the phylum
level thus:

...

Phylum Cordates

Sub-phylum Vertebrates

Class Agnatha (primitive jawless
fish)

...

whereas the class Ciliophora would not need to
be linked to any sub-phylum record. Instead, it would
link straight up to the phylum level thus:

...

Phylum Protozoans

Class Ciliophora

...

Implementing gaps like this would be awkward
using the E-R approach. To preserve referential
integrity, one could plug the gaps using dummy entries
which would then have to be ignored as the hierarchy
was navigated. Alternatively, one could make each
record indicate the table of its next higher entry as
well as the key of that entry, but such linkages would
be costly to maintain and use.

2.3 FLEXIBLE VIEWING
Even if an E-R solution to the implementation of

the Linnean hierarchy can be found, using it to display
and manipulate the data in the structure would reveal
another dimension of the problem.

As we saw in 1.4 and 1.5 above, the structure
needs to be expanded, contracted, and scrolled.
Records need to be inserted, changed, deleted,
promoted, and demoted. Add to this the fact that there
would be gaps in the chain of relationships and it
seems likely that any solution would be clumsy and
involve a lot of resource-hungry navigation of table
structures.

As we saw in 2.1 and 2.2, table relationships may
have to be changed dynamically to cater for new
taxonomic levels and particular records may have a
chain of related records through the hierarchy that
leaves gaps at some table locations. It is tricky enough
under normal circumstances to get inner and outer
joins to deliver the subset of the database that
satisfies a query without these added complexities.

3. THE TREEVIEW APPROACH
Using Visual Basic as the programming language,

an alternative to the E-R approach is available
courtesy of a standard component among the
Microsoft Windows Common Controls called
TreeView. The control is typically used to display lists
of folders and their contents nested to any depth.
(Bradley and Millspaugh 2001 pp. 49-54 gives a good
account of its use.)

���

3.1 A HIERARCHY OF NODES
To implement the Linnean hierarchy using a

treeview, a Nodes collection is built and displayed as
part of a TreeView control. Nodes may be expanded
and contracted individually, giving the user great
flexibility in how the data is presented.

Building a Nodes collection is a matter of adding
each item to a node’s list or defining it as the child of
an existing item and thus creating a new node.

A child is indented to the right of its parent when
displayed, thus emphasising its taxonomic level. The
vertical ordering of each list gives the order in which
items emerged.

The easiest way to build the node hierarchy is to
read through a table of items that is already in the
correct sequence and to add them one by one using
the following logic:

IF A top level (Kingdom) item THEN

Add THIS to the list of the root node

ELSEIF A lower level than the previous item
THEN

Add THIS as a child of the previous item

ELSEIF A higher level than the previous item
THEN

Find the most recent item of the next

higher level that has been

encountered so far and

Add THIS as a child of that item

ELSE Add THIS to the list of its level,

whatever that may be.

!�
���:�����0�		�	�����������	�����A���������

���

This approach requires each item to know its own
taxonomic level, but vertical positions are controlled
by the software, which is why the table must be
presented in the correct sequence initially. The
hierarchy can be displayed, maintained, and used in
a format such as that illustrated in fig. 3.

3.2 ADVANTAGES OF THE TREEVIEW
APPROACH

The decisive advantage of a format such as that
shown in fig. 3 is the elegant, intuitive, and convenient
presentation and navigation it affords the hierarchy.
Once the Nodes object is populated with data,
features such as the ability to scroll, expand, collapse,
select from, and skip through the structure are
immediately available as part of the functionality of
the component.

Because of the simplicity of the data schema, no
messy table navigation or query definition is required.

Gaps in the linkages, a major problem for the E-R
approach, are catered for. As the logic in 3.1 makes
clear, mapping towards a leaf is a matter of keeping
track of the identity of the previous item and using
the “child of” relation. Mapping towards the root
requires knowing the identity of the most recently
encountered item of any higher level in case the next
higher has not been used so far and an even higher
one has to be used as the parent.

Taxonomic levels can be added to the supporting
table after implementation, but deletions should be
allowed only for levels that are not in use.

The program Linnean.exe is available to
demonstrate a model solution to implementing the
Linnean hierarchy using the TreeView approach.

4. WIDER IMPLICATIONS
The present solution can be adapted to other

hierarchies providing its essential features are
preserved, which are:

♦ Two tables, one for the items in the hierarchy and
one for the level definitions.

♦ Levels that are manageably small in number, such
as three for Ocean -- Sea -- Bay. The Linnean
taxonomy might have up to twenty levels, but a
hierarchy with a hundred would probably be too
much trouble to navigate by means of a treeview.

♦ Items that are controlled by just three numeric
fields: a primary key to uniquely identify each item;
a foreign key to identify the level of nesting; a
computer-controlled number that records the
user’s preference for the vertical order of the lists
within the hierarchy.

Implementing the Linnean hierarchy provides a
good opportunity for students to think beyond the
obvious and most familiar techniques and to exploit
the features of standard components when deciding
how best to store and process hierarchical data.

REFERENCES
Bradley, Julia Chase and Millspaugh, Anita C.

(2001). Advanced Programming in Visual Basic
6.0, McGraw-Hill.

���

