Zhong Tang

UNOS Operating System Simulator

UNITEC Institute of Technology
Auckland, New Zealand

Ztang@unitec.ac.nz

ABSTRACT

The course ‘Operating System Internals’
(OSI) usually focuses on teaching the
concepts and issues surrounding the design
of an OS in general. Students are advised to
learn by example and through experiments,
which are fundamental for the real
understanding of operating system. Although
controlled experiments with a commercial OS
is one of basic approaches in organizing the
practical work of students, unfortunately, the
sheer speed and complexity of modern
computer systems make them really hard to
understand by the average students. So
providing students with a high-level OS
simulator that can isolate the actually
environment is an alternative way that will
allow students to observe the work of various
OS components and to explore various
algorithms.

This paper describes our own developed
UNOS Operating System Simulator, which is
implemented as a standalone Java application
simulating a basic multi-tasking non-pre-
emptive operating system and requests least
programming knowledge.

Key words: Courseware, Java, Operating
system, Simulation, UML

1. INTRODUCTION

‘Operating Systems Internals’ is a level-6 course,
which is offered on a semester basis in UNITEC
Institute of Technology. The laboratory experiment is
a main part of the course. Currently, the students
experiment with the internals of the Windows NT
operating system and its Win32 API. However, the
course results and the previous students’ feedback
showed that students spent considerable time
overcoming previous technical difficulties, and missed
the more important conceptual knowledge. These are
the problems and constraints the students are
confronted with in their practical work:

¢ Performance: Spend considerable time on
overcoming technical difficulties.

¢ Information: Concepts is hard to be abstracted from
experiments.

¢ Economy: Students lose interest on the course.

¢ Control: Hard to manipulate the experiment to get
desired results.

¢ Efficiency: Completion of an experiment is time
consuming.

¢ Service: Lack of visual information of internal states
and operations.

Therefore, there remains a need for the students
to interact with an animated tool, i.e. an operating
system simulator, in order to explore various
algorithms that are used in operating systems, e.g.
Job scheduling, CPU scheduling, Disk scheduling,
Virtual memory management.

In this paper, the writer will make a short survey
of existing ‘teaching’ OS, then describes an internally
developed operating system animated tool: UNOS,
which features a full-fledged graphic user interface
running on Java2 runtime environment, complete
source and documentation, followed by future
extension to UNOS system in conclusion.

2. OVERVIEW OF EXISTING
‘TEACHING’ OPERATING
SYSTEMS

Using an existing commercial OS for students
practical work of the ‘OSI’ course has several
limitations: 1) lack of a copy of the OS source code;
2) requiring more technical skills; 3) need of more
programming knowledge. To tackle the issue of the
complexity of commercial OS, a number of ‘teaching’
operating system have been created. These ‘teaching’
OS can be classified in two types: downsize operating
system and simulated operating system. An example
of the former is Minix, and of the latter is Nachos.

Minix is a free Unix clone of small size, which is
designed as a teaching system by Andrew S.
Tanenbaum. To work with Minix, users have to
overcome the steep learning curve in installing and
getting familiar with the system. Moreover, it does
not provide a visual interface tool to manipulate the
internals of the OS.

Nachos (Silbershatz and Galvin 1999) is an
instructional software run on Unix. It allows users to
study and modify a real operating system. It is a
complex piece of software and it is difficult for
beginning users to gain an overall understanding of
the various system components and how they fit
together.

The only difference between these ‘teaching’
operating systems and real operating systems is that
the ‘teaching’ operating systems run as a single Unix
process, where as real operating systems run on bare
machines. Both Minix and Nachos simulates the
general low-level facilities of typical machine, include
interrupts, virtual memory and interrupt-driven 1/O.

Although it is possible to read and understand source
code by using the code browsing tools (e.g. the emacs
‘tags’ facility), its intended audiences should have
knowledge of common structures such as stacks,
queues and linked list, and be familiar with current
hardware architectures and knowledge of C, C++ and
UNIX.

The requirement of the OSI course at UNITEC is
to let the students to concentrate on the comparison
between main ideas, rather than on the details of
implementation. Using those ‘teaching’ operating
systems mentioned above in the OSI course still does
not address the issue of complexity. However, the
writer’s positive experience with the formers inspired
the design and implementation of UNOS system as
a high-level animated simulator.

3. THE OUTLINE OF UNOS
SIMULATOR

The UNOS operating system simulator is initially
intended for use primarily by the students in open
laboratory work, but its latest version can also be used
by the instructor in the classroom to illustrate concepts
of OS. This animated tool has a user-friendly
interface, simple to use, both in term of incorporating
student’s algorithm and performing the simulation. At
the same time it allows students to tune the various
parameters, so that they can observe the effect on
the overall performance. The system has two regimes
of simulation — ‘Single Step’ or ‘Continue’ running
modes. Its ‘Single Step’ running mode enables
students to observe OS internal states at any
particular phases and to display the current statistic
information of CPU scheduling and memory usage.
For functional use, the UNOS simulator consists of
following components:

1. INPUT JOBS AND CREATE PCBS
¢ Accept jobs;
¢ Manipulate job descriptors (JD) and
process control blocks (PCB);

2. TUNING OS PARAMETERS
¢ Set CPU speed and OS size;
¢ Set main memory and virtual memory
sizes;
¢ Set disk storage size;

3. SELECTING ALGORITHMS

¢ Set job scheduling algorithm: First
Come First Served (FCFS) or Priority

¢ Set CPU scheduling algorithm: First
Come First Served (FCFS), Shortest
Job First (SJF), Round-Robin (RR) or
Priority.

¢ Set memory management algorithm:
First-In First-Out (FIFO), Second
Chance Page Replacement (SCPR) or
Least Recently Used (LRU)

¢ Set disk scheduling algorithm: First
Come First Served (FCFS), Shortest
Seek First (SSF) or Elevator

4. SIMULATION
¢ Simulate program behaviors;
¢ Simulate process behaviors;

O

Job
Scheduling

D

Scheduling

Sim ulat or\

5. PERFORMANCE REPORT
¢ System simulation history
* Frame Information

4. THE UNOS ARCHITECTURE

The UNOS operating system animated simulator
is designed using the Unified Modeling Language
(Booch et al. 1998) and developed in Java using its
concurrent programming facilities. The Use Case
Model captures all functional and/or non-functional
requirements in the system. The writer first identified
all actors that interface with the system, then analyzed
the main functions of the system and realized the
functions with these use cases.

4.1 PRIMARY USE CASE VIEW

The primary use case view captures the
relationships among the different components of the
UNOS system (Figure-1).

@ «© @

CPU Memaory Managing Disk

CPU
Thread

Scheduling

Peripheral Devices

/

Maintain Account Create OS5 Creste Joks Loginto UNDE

User

Figure-1 Primary Use Case View

The function of each use case in the primary use
case view as described in the following sections.

411 CREATE JOBS

The system provides editing ability for users to
create a job batch file, which is saved as a text file.
After the simulator is configured and launched users
can either load the job batch file into the job queue or
create jobs at run time. The simulator manipulates
job descriptors (JD) and process control blocks (PCB)
representing the programs executing on a computer.
JD contain such job characteristics as average CPU
execution time, 1/O burst times, priority, memory
requirement and service request frequency (I/O rate
%). PCBs extend JDs and are constructed when a
job is loaded into the virtual memory.

412 CREATE OS

This function allows users to configure the OS
simulator by setting OS parameters (time slice, page
size, physical memory size and virtual memory size,
etc.) and choosing different scheduling algorithms for
jobs, processes, memory and disk operations.

413 JOB SCHEDULING

The job scheduler loads jobs from the job queue
to the virtual memory, creates process control blocks
(PCB) from the job descriptions (JD), and place them
on the ready queue. The order in which jobs are
selected from the job queue is determined by the job-
scheduling algorithm supplied by the user.

4.1.4 CPU SCHEDULING

The CPU scheduler ‘consumes’ PCBs from the
ready queue by placing them, one at a time, on the
CPU, according to the CPU scheduling algorithm. The
CPU scheduler also allocates a time slice to each
process’s execution.

415 MEMORY MANAGEMENT

When receiving a request from CPU thread, which
asks for a new frame for the current running process,
the memory management checks the memory free
list to find an available frame. If there is no such
available frame, it carries out the page replacement
according to the given memory management
algorithm.

416 DISK SCHEDULING

When receiving a request from the CPU thread,
which asks for a disk writing or reading operation for
the current running process, the disk scheduling
scans the disk to allocate the tracks according to the

given scheduling algorithm. The screen shot (Figure-
4) illustrates the implementation.

417 CPUTHREAD

The CPU thread is a major function of the UNOS
system. It simulates the execution of the running
process by monitoring the simulation time and
reacting to messages that are generated randomly
(such as new page, I/O request), time-dependent
events (such as time slice expiration or end of task),
and messages triggered when the user types a
system command (such as suspend, resume or kill)
in the system console. The message (I/O request,
wait, sleep, or suspend) results in placing the running
process’ PCB on its corresponding queues, which
represent ‘monitors’ (Hoare, 1974) and are
implemented as Java synchronized objects. A polling
watch (Lea 1977) is attached to each of these queues
and monitors the absolute simulation time and
compares it with the time at which the PCB should
be removed from the corresponding queue. The
possible states of a process are Ready, Running,
Blocked, Waiting, Suspended, Sleeping, and
Finished.

4.2 SECONDARY USE CASE VIEW

The secondary use case view captures the
relationships between the UNOS system and its
external environment (Figure-2).

The function of each use case in the secondary
use case view can be described as overpage:

421 INTERACTING SIMULATOR

The function to interact with UNOS system is
carried out by the system console. The users can
type a system command in the console to control the
flow of system execution. The system commands
includes: 1) Create a new job; 2) Load a job from job
queue to ready queue; 3) Suspend a given process;
4) Resume a given process; 5) Wait a given process
until another process invoke it; 6) Sleep a process
for a given time; 7) Kill a given process; 8) Cls to
clear the screen of the console; 9) Shutdown to exit
the simulator; 10) Help to list all commands and their
formats.

422 CONNECTING TO DATABASE

This application has a MS Access database to
hold user accounts (i.e. user ID and password). Users
need to connect to the database before running the
simulator.

A

Sirmulator / User

Interacting Simulato Connecting to Database

UserDatahase
(from Databaze)

M aintaining Database

A

System
Administratar

Figure-2 Secondary Use Case View.

%ﬁsimulalol Configuration

Figure-3 Simulator Configuration.

5. SIMULATION MODELS AND
PERFORMANCE REVIEW

UNOS simulator is an interactive one, with simple,
intuitive user interface, to allow users to tune various
parameters and select incorporated algorithms of four
distinct components of the simulated OS, i.e. Job
Scheduling, CPU Scheduling, Virtual Memory
Management and Disk Scheduling (Figure- 3).

For each of these components, a number of
algorithms are discussed in class, and calculation
exercises are performed in tutorials. In open
laboratory work, users can use the UNOS simulator
to observe the effect of the algorithms that they supply
for the UNOS animated models, and compare the
results of the calculation exercises with the outputs
produced by UNOS simulation models.

5.1 CPU SIMULATION MODEL

The CPU simulation model provides a graphical
description of the process scheduling and job
scheduling operation of an OS (Figure-4). It is also
incorporated with a console-like interface for user to
manipulate the process and interact with the operation
of the simulator. During UNOS simulation period,
users can press the button ‘History’ to suspend the
CPU thread at any time. This will pop up the ‘System
Simulation History’ window (Figure-5), which shows
relevant history information of processes running up
to this point. Such system history information include
system time, process nhumber, start time, finish time,
load time and total wait time.

Meanwhile if necessary, users can click any cell
on the job queue to show a particular job’s information
or click any cell on the other queue, e.g. Ready Queue,
to show the process state (Figure-6). The ‘Continue/
Single’ button allows the user to set simulator-running
mode. In ‘Single’ mode, the user clicks the ‘CPU’
button (a big square button labeled with current PCB
number) each time to enable the system run a time
slice.

When all jobs in the job queue are successful
done, the simulator is in idle state. The user can enter
the command ‘Report’ in the system console to
display the statistic information of the overall
performance of the simulated system (Figure-7).

5.2 MEMORY SIMULATION MODEL

The memory simulation model provides a
graphical description of physical memory and virtual
memory allocation and dynamically reflects the page
replacement operations of an operating system
(Figure-8). The message new page is forwarded to
the Page Table object, which refreshes every CPU
time to reflect the updated paging information, such
as page frame number, logical page number, load
time, recently used time, presence bit and valid-invalid
bit. This simulation model also allows user to directly
choose a logical page, by clicking a row on the current
running PCB’s page table, as the next page that the
corresponding process is going to reference so as to
highlight the procedure of page replacement. To track
the usage of frames in physical memory, users can
press the button ‘Frame Info’ to suspend the CPU
thread at any time and to show the frame usage
information (Figure-9).

5.3 DISK SIMULATION MODEL

The disk simulation model provides a graphical
description of disk scheduling and track operations
of an OS (Figure-10). The tracks are structured in a
plane diagram to illustrate the procedure. The ‘Auto/
Step’ button allows the user to set the track-scanning
mode. In ‘Step’ mode, the user clicking the button
‘One Step’ each time causes the scanner scan a track
according to the selected scheduling algorithm, which
highlights the concept of disk scheduling.

6. CONCLUSION

In summary, the UNOS operating system
animated simulator provides a useful opportunity for
supplementing the use of a real OS for teaching the
OSl course. This paper describes the applicability and
the main design and implementation of the UNOS
interactive animated simulator. UNOS has been
tested with almost course demos/examples in the
textbook (Operating System Concepts, 5th,
Silberschatz). The simulator was designed and
developed using Object-Oriented methodology, which
ensures the extensibility of the system. The future
work on UNOS will include the functions, such as
inter-process communication, file system, etc.

2 CPU Scheduler & B

CPU
" e voo] m
Ready Queue P 6
OS2 »
4 1o« JJJJJJEEJE] P2 [« /O Request <
¥ T T T Waiting 4
B 8 B B T B B e Sieeping <
. T T suspend
: Process P1 terminated. e %
_View Memary |
_ Eat |

Figure-4 CPU Scheduling

Syztem Simulation History | x|

System Simulation History
§: Start time F: Finish time W Total wait time

wstern Time=0 P1 5=0 F=10 W=0
System Time=10 P2 S=10 F=20 W=10
System Time=20 P1 S=20 F=30 W=10
System Time=30 P3 5=30 F=40 W=230
System Time =40 P4 S=40 F=4&0 W=40
Systern Time=50 P1 S=50 F=60 W=230
Systermn Time =60 P2 S=60 F=70 W=250
System Time=70 P1 S=70 F=80 W=40
System Time=80 P3 S=80 F=90 W=70
System Time =90 P3 5=80 F=100 W=70
System Time=100 P1 5=100 F=110 ¥W=60

Pracess P1 is finished.
Frocess load time is 0; Totalwaittime is 60

System Time =110 P2 5=110 F=120 ¥W=40
System Time =120 P4 5=120 F=130 W=110
System Time =130 P3 5=130 F=140 W=100

oK |

Figure-5 System Simulation History

Process Control Block E
Process ID |5 State |Ready

CPU Burst Time |50 Priority (50
'O Burst Time |50 Memory Size 42400
OK

Performance Report [%]

Simulation Performance Report |

Simulator configuration information

08 Size: 8; Main Memory Size: 50;
Page Size: 2048; Virtual Memory Size: 176;

Joh Scheduling Algorithm: JOB_FCFS;

CPU Scheduling Algorithm: PROCESS_FCFS;
Memory Management Algorithm: MEMORY FIFO;
Disk Scheduling Algorithm: DISK_FCFS;

1. Total number of processes execuied is 16
2. Total number of [/0 Requests is 39
3. Total number of Page Faults is 72

4. Total her of Page Replac is0
5. Average Waiting Time is: 488.125
6. Average Turnaround Time is: 535.625 0K

Figure-6 Process State Information

Figure-7 Statistics Calculated

&2 M emory View [-[CT>]
aem n
PCB List 1. Memory requirement for this process Mermory Utilization
3 - is dividedinto | 16 pages. 5
Choose from the list to Page Fault Rate
see job’s memory allogation 2. Each page is 2 K. m
Page Table Physical Memory View

Pl v] Loatime|_BUTme (U] e (I (I e (I

BAF
MF

i —— Y Y P P S e P P e S S S S

ﬂ ﬂ ﬂ ﬂa a a=] a Ml The frame is unused. [

nsm x| m View Disk

24T 320 3 1 EEEEEEE] M Theframe is swapping. = —

1F _Frame Info_|
I)]] o])])

SLF
1T 110 110 1

The frame is used. __Onestep |

The frame used by 0S. Fxit
Virtual Memory View

mjrn n|n 6 (e n(n e ie 60 s 6666
BT P Y Y e S Y P P Y ET S Yy
min|n|n|nje(nn(ne(ein(n s e e
©(nn|o|@e(nn(n6(s(o(no|n6(o))
Y N Y Y Y Y Y Y Y P Y e Y

515 | 1 | mf o) o])))]) o) o) |) s
1) s) | 1)) O

Figure-8 Memory Management

Memory Frame Information E

Frame Infomation

FrameMo | LoadTime | LRUTime | UsedBit
] 0 i 1
1 10 10 1
2 0 100 1
k] 0 50 1
4 0] 1
5 0 70 1
B 0 an 1
7 0 110 1
g 110 110 1
a 0 120 1
10 130 130 1
11 140 260 1
12 0 150 1
13 160 160 1
14 170 170 1
15 0 180 1
16 180 140 1
17 210 210 1
18 210 210 1 -

<« T

saoouw@anon

|_One Siep_|
View Queus|
View Memoery'
Exit

2
%—_
g —————————————————————————————}
g —— 3}
w3}
g+«
-]
w1}
2
oy]
25_B
gg—
- |
y————————————————————
g—_
om |

Figure-10 Disk Scheduling

REFERENCE

Booch, G, et al. (1998). Unifield Modeling Language,
User Guide, Addison Wesley

Coad, P., Yourdon E, (1991). Object Oriented
Analysis, Prentice Hall

Gancho Ganchev. “An Operating System Simulator
for Teaching OS Internals”, 12th Annual
Conference of the NACCQ

G. Agrirre, M. Errecalde, R. Guerrero, C, Kavka.
Texperiencing MINIX as a Didactical Aid for
Operating System Courses, Operating System
Review, 25:32-39, July 1991. Dunedin, New
Zealand

Jacobson, I., Booch, G. & Rumbaugh, J. (1999).
The Unified Software Development Process,
Addison - Wesley

Jose M. Garrido, (2001). “Object-Oriented Discrete-
Event Simulation with Java”.

Silberschatz, A., and Galvin, P. (1998). Operating
System Concepts, 5th edition

Stallings, W. (1998). Operating Systems; Internals
and Design Principles, 3rd ed. Prentice Hall.

Tanenbaum A. (1987). Operating System Design and
Implementation, Prentice Hall

sioded i19)sod §}

4

Pl

