
259
259259259259259259

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

 N
ew

 Z
ea

la
nd

 J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz

ABSTRACT
Neuro-Linguistic Programming (NLP) offers a

rich set of practical tools that can profoundly
influence human performance and achievement.
NLP has its origins in models developed to
describe the intuitive techniques used by
exceptionally gifted psychotherapists. It is an
epistemology, describing how we know what we
know, as well as a methodology that creates
models describing the processes that humans
use to competently perform specific tasks. NLP
also outlines strategies that can be used to
discover processes that achieve excellence in
the human performance of a specific task. The
techniques used by NLP are process-oriented
rather than content-oriented, allowing them to be
transferred to any discipline. This paper
introduces NLP techniques and considers the
application of these techniques to the teaching
of computer programming. Observations derived
from teaching programming courses are used to
propose a model of the processes and strategies
used by competent programmers. Novice
programmers can be taught these strategies to
create a psychological environment that
facilitates the removal of preconceptions
concerning the subject matter. Additionally,
successful learning strategies and practical
techniques encourage and accelerate the
development of practical competency.

1. AN OVERVIEW OF NEURO-
LINGUISTIC PROGRAMMING

Neuro-Linguistic Programming (NLP) is a branch of
applied psychology that claims to provide techniques
that teach the required skills to attain excellence in
the performance of a specific task. Developed by Richard
Bandler and John Grinder (Bandler and Grinder, 1979),
NLP attempts to find ways of modelling human
behaviour, particularly behavioural patterns that facilitate
the accomplishment of excellence. NLP techniques
are derived from models developed to describe the
intuitive techniques used by exceptionally gifted
psychotherapists. NLP techniques are process-
oriented, focusing on the generation of specific
outcomes, rather than attempting to specify behavioural
content for a specific situation. As these techniques
can be applied in the absence of task-specific details
they can be applied to a diverse range of situations.
Adler (Adler, 1994) and O’Connor (O’Connor, 2001)
provide a thorough introduction to NLP concepts and
techniques.

This paper introduces NLP techniques and
considers the application of these techniques to the
teaching of computer programming.

2. SENSORY MODALITIES
Human perception occurs within three primary

channels or sensory modalities. These categories of
sensory information are visual, kinesthetic (feelings and
visceral sensation) and auditory. Secondary modalities

Teaching Computer Science: an
NLP Perspective

Andrew Eales
Wellington Institute of Technology

Petone, Wellington, NZ
andrew.eales@weltec.ac.nz

260260260260260

(olfactory and gustatory sensations) are ignored in this
discussion, as sensations of smell and taste are
unlikely to substantially assist programmers. Primary
modalities can be divided into more specific modalities:

visual-analog: shape and colour
visual-digital: written symbols
auditory-tonal: pitch and tone-colour
auditory-digital: spoken language
kinesthetic-primary: sensation and physical feeling
kinesthetic-emotional: emotions.
Sub-modalities provide further refinements within

the different sensory categories by considering single
aspects of a single modality. Auditory submodalities
include pitch, loudness, tone-colour and temporal
patterns. All modalities can be either recalled from
memory or mentally constructed as illustrated by the
following examples:

“What is the syntax of an array declaration in
Java?” - visual-digital, remembered.
“How is the following algebraic equation
represented in Lisp?” - visual-digital,
constructed.
“What is wrong with the fifth line of code?” -
kinesthetic-primary evaluation by comparison to
stored, visual imagery.
“What does Peter Jackson look like wearing a
purple hat?” - visual-analog, constructed.
“What does moon dust feel like?” -
kinaesthetic-primary, constructed

Indications of the internal representation system
used by a people are gained by paying close attention
to eye movements and language usage. Sentences
such as “I do not see the relationship.”, “This solution
to the problem does not feel right.”, and “I hear what
you say.” reflect visual, kinesthetic and auditory
thought processes. Common eye movements that also
indicate the use of a particular modality include
movement to a top, left position (recollection of visual
images) and movement to a top, right position
(construction of visual images).

3. PERFORMANCE
EXCELLENCE

The attainment of mastery in any task requires a
progression through different levels of accomplishment.
Novices typically start from a state of unconscious
incompetence and then progress to states of conscious
incompetence and conscious competence. Mastering
a skill requires a progression to the highest-level of
skill which is termed unconscious competence.
Developing conscious competence and unconscious

competence requires practice or task repetition.
Programming instruction must attempt to continually
exercise prior competencies while adding new material
as required. For first-year students the amount of
programming activity is more important than project
size or level of difficulty.

Grinder and Bandler (1979) define a level of skill as
the ability to make finer distinctions. Programming skill
requires a clear understanding of the individual language
constructs and their interaction. Matching appropriate
operations and then modifying these to produce the
desired outcome creates the solution to a specific
problem. The ability to evaluate multiple solutions to a
problem indicates a finer distinction than the ability to
solve the problem using a single solution. Requesting
students to provide or evaluate multiple solutions, or
to compare inefficient solutions to an elegant solution
can achieve similar results. Note that finer distinctions
can occur within a hierarchy of different levels of
abstraction that are termed chunks. Upward chunking
moves from a more detailed view to a less detailed
view, while downward chunking provides the opposite
transformation. Programming and software
development are similar in nature to creative endeavours
such as architecture, writing and music composition,
in that all of these activities require extremities of both
upward and downward chunking. These extremes, as
well as individual affinities towards a specific chunk
size make these tasks inherently challenging.

4. LANGUAGE AND LIMITING
BELIEFS

The use of language can elicit a specific internal
(sub-conscious) representation to be made and
encourage a specific ordering of modalities. The use
of metaphor can also create individual internal
representations. The creation of these representations
is the important process, the representations
themselves do not have to be consciously
acknowledged or explained. Especially important for
novice programmers is the understanding created by
joining visual-digital (syntactical) representations and
visual-analog (semantic) representations. These sub-
modalities correspond to programming language
syntax and a visual representation of programming
language semantics. For example, a two-dimensional
array given in visual-digital form: int Apartments
[10][4]; has the visual-analog equivalent of a picture
of a block of apartments, ten storeys high with four
apartments on each storey. It is important that
students be provided with the visual-analog
representation. A verbal description of the
representation forces students to visually construct a

261261261261261

representation, which may or may not be correct.
Verbal descriptions are rarely internalised literally
(Bandler and Grinder, 1979, p.124). People usually
associate verbal descriptions (words) with internal
visual or kinesthetic representations that provide
semantic content to the words. Creating an accurate
visual representation from a verbal description is a
higher-level skill that assumes that the verbal
description triggers the correct visual-analog
representations.

Robert Dilts (1991) regards experience as
consisting of a hierarchy of levels. Starting from the
lowest level, these are Environment, Behaviour,
Capability, Beliefs, Identity and Spirit. Higher levels of
experience tend to influence lower levels. Thus the
belief “Programming is hard” is likely to negatively
influence capability, which occurs at a lower level.
Such beliefs are termed limiting beliefs and can be
negated by being challenged (Koornhof, 1996) with
appropriate responses such as “Hard when compared
to which other subjects?”, or “Which specific type of
programming is hard?”, or “Are all programs hard to
write?” Many programmers, including seasoned
professionals listen to music while working. Music can
therapeutically influence behaviour and provide a
higher-quality work environment. Unfortunately, these
positive influences can be negated by higher-level
limiting beliefs.

5. MODELLING PROGRAMMING
EXCELLENCE

Sensory modalities form different representational
systems that allow us to experience the world in
different ways. The selection of different modalities for
different situations, as well as the patterns of interaction
between different modalities can profoundly influence
how we experience the world. The common practice
of listening to music while working indicates that
auditory modalities play no role in the internal process
required during programming. Music may enhance the
environment and facilitate behavioural patterns
conducive to programming; it does not assist the
process of programming. A proposed model of
programming excellence derived from discussions with
both students and experienced programmers is shown
in figure one.

Solutions are created visually by applying recalled
images that represent appropriate previous
experiences related to the current programming task.
The applicability of different recalled images is
kinesthetically determined. These recalled images are
then used to construct new images representing a
possible solution or a promising partial solution.
Feedback that evaluates the validity of the generated
combinations and possible solutions is obtained
kinesthetically. Teaching styles that mimic this
process will be more successful than teaching styles
that proceed through a different sequence of steps.

Figure 1. A model of programming excellence

262262262262262

Additionally, language usage that violates the model
will create confusion and uncertainty. As an example,
compare the following two teaching scenarios, adding
visual imagery as required to the proposed model:

1. “It is as clear as a bell that by combining this
process with this string we obtain a solution. We can
then see that the solution is correct by tracing through
the process.”

2. “We can see that this process is similar to the
one studied yesterday. By modifying this diagram of
the process we feel that the modified process may
provide a solution. By combining the new process with
our previous knowledge of strings, a solution appears
possible. This solution feels logical and elegant.”

The above model is a simplification that can be
used in classroom situations. In reality, different people
may have subtle differences in the ways that they
access and organise internal information.

6. ANCHORING FAVOURABLE
STATES

Internal states are essentially feelings and
emotional states. When these states become
conditioned responses to stimuli, the stimuli are called
anchors. These anchors can be used to give access
to emotional states. Anchors can be used to replace
the feelings of frustration and bewilderment
experienced by many students when they are forced
to interact with the vagaries of programming languages,
compilers and online help systems. A light-hearted
moment that breaks a serious illustration or explanation
will trigger relaxed internal states.

If this internal experience is accompanied by a
change in the instructor’s tonal inflection, the
experience may be recalled at a later time by using
the same tonal inflection. A discussion of anchoring,
which can be achieved using a variety of other
techniques is beyond the scope of this paper.

7. CONCLUSIONS
NLP provides a rich set of tools that can assist

students to master practical tasks. Task repetition
increases skills by encouraging both conscious and
unconscious competency. The use of visual metaphors
encourages internal representations that connect
visual-analog and visual-digital modalities. Eye
movements and language usage provide indications
as which modalities are being used to retrieve or
construct images or information. Use of appropriate
language and visual imagery, which follows the
proposed model of excellence, mimics the modal

processes used by successful programmers. Listening
to music should be encouraged as it encourages
relaxed internal states while at the same time
effectively nullifying auditory modalities that are of little
value to the programmer. Limiting beliefs can be
removed by challenging their validity, while favourable
internal states can be recalled by anchoring. By
following the processes presented by the proposed
model, students can be taught in a manner that is
consistent with the strategies used by experienced
programmers. This paper provides a necessarily
shallow overview of the techniques of Neuro-Linguistic
Programming. It is hoped that computer programming
instructors may find these ideas interesting enough
to warrant further investigation.

REFERENCES
Addler, H (1994) NLP: The New Art and Science of

Getting What You Want. Piatkus Publishers,
London.

Bandler, R, Grinder, J. (1979) Frogs into Princes. Real
People Press, Moab.

Dilts, R. B., Epstein, T. and Dilts R.W. (1991) Tools
for Dreamers, 1st Ed. Meta Publications,
Cupertine.

Koornhof, P. (1996) of Muses and Magic - Essays for
Musicians.Performance Launching Network,
Noordbrug.

O’Conner, J. (2001) The NLP WorkbookThorsons,
London.

