
351351351351351

identify the most common problem: “many of the
solutions would not compile due to syntax errors” (p132).

A major question in teaching IT is the choice of first
programming language, this is part of an ongoing debate
about which language is “better than another” (Jacobs
2002). The usual answer is that ‘it shouldn’t matter’
and to justify a particular choice: ‘language x is easily
transferable to other languages’. Most languages are
syntactically similar ‘If you can write in x you can write
in y, just miss out the z words’ (except PERL which
even its fans describe as obfuscatory).

In order to do this transfer, students would benefit
from skills in comparing languages. In Finkel’s (1996)
comparison of programming languages the questions
are matters of language description and use – terms of
literacy: “what is the structure (syntax) and meaning
(semantics) of the programming constructs?… (and) Is
the programming language good for the programmer (is
it easy to use, expressive, readable, elegant)?”. The
terminology of such considerations is that of language.
Finkel, for example describes content free grammars
such as Backus-Normal Form Pascal syntax which look
much like definitions of sentence structures.

Jacobs (2002) argues one way to way to simplify
application is to use a language with a simple syntax,
but “just because a program is easy to write does not
mean it is easy to read, there is nothing more irritating
than inheriting cryptic or poorly designed code to
maintain or fix”. Such issues of maintainability through
producing code that is readable and well commented
seem much closer to issues of language than of
mathematics. Perhaps it there is a link between the
lack of linguistic understanding in computing and a
problem Jacobs identifies as a lack attention to readability
in code. Finkel also describes goals of a language:
simplicity, uniformity, abstraction and clarity. Again the
discussion is based around language. Jacobs (2002)
for example argues for readability but against “noise
words” like “do” and “then”. He argues “these extra words
are of no real use and therefore should not be included”.
Students would require tools of language to enter into
such discussions.

In terms of clarity Finkel argues mechanisms should
be well defined, people should be able to read them,
knowing their function. C, for example, for the common
confusion between the assignment operator (=) and the
equality test operator (==). Thing == Fred is very
different to Thing = Fred. One might argue that this
is closer to maths than language. But we already are
highly skilled at the importance of this in our everyday
language: we know very clearly that “Sue hit John” is
not the same as “John hit Sue” and that subtle differences
in syntax can give quite different meaning: “Visiting aunts
ARE boring” vs “Visiting aunts IS boring”.

At the most advanced end of programming are the
attempts to allow interaction with the computer via normal
language. While this might benefit the user, it will require
a high degree of language knowledge for the IT specialist.
Barker and Szpakowicz (1995) for example describes
clause level relationship analysis, and Inman (1997)
discussed the importance of syntax for NLP.

3.2 Structured English
Structured English is used during the analysis stage

of a project to identify business processes eg “If hours
greater than 40 pay fixed rate plus actual – 40 times
rate”. It is described in class as ‘in English but with half
the words missed out’. Its cousin pseudocode is
performed closer to actually writing the program and is
written in a form that can be easily converted into
programming statements. Pseudocode enables the
programmer to concentrate on the algorithm, without
worrying about the peculiarities of the programming
language.

While being characterised as formally-styled natural
language, neither Structured English or Pseudocode are
defined in terms of notation. Few texts have much to
offer beyond “miss out words” or advice such as the
vocabulary used in the pseudocode should be the
vocabulary of the problem domain, not of the
implementation domain. There is an underlying
structure, the use of six specific structured programming
constructs: SEQUENCE, WHILE, IF-THEN-ELSE,
REPEAT-UNTIL, FOR, and CASE.

Many students struggle with pseudocode and
Structured English. This maybe because we do not do
justice to the underlying language components, instead
relying on “geekiness” to permeate students: “You know
you’re a geek when you write a poem that looks like
pseudocode” (Walsh 2003).

3.3 HCI
A high level understanding of language is fundamental

to work in human computer interaction as shown by the
following examples:

Interactivity is defined in terms of encoding in
language, conversation is used as basis for interactivity
(Mann and McGregor 2002) and “individuals’ interactions
with computers, television, and new media are
fundamentally social and natural, just like interactions
in real life” (Reeves and Nass p5).

Koepsell and Rapaport (1995) describe how software
is seen as both written work (like a book) and like a
machine…in that it can perform certain differing
functions”. This dual nature from an ontological basis,
they argue, is at the root of our difficulties in legal
treatment of software: utilitarian objects can be patented,
ideas cannot.

352352352352352

Smith (2002) argued that computer interactive fiction
is limited by the conflict between narrative and
interactivity. The solution, Smith proposes, is a
framework for seeing the “user as a resource” to enable
them to tell stories, or in other words, a language.

Seely Brown (1999) gives an example of an
application based on conversation. He describes tech
reps fixing photocopiers where most of their learning
came from “just together weaving together a narrative”.
The created a distributed network to encourage these
conversations then because fragments were lost to the
ether created a web-based system and a process of
transforming opinions and stories into warranted beliefs.

Cicognani (1998) describes how language and
communication underlie models of cyberspace and
promotes consideration of “cyberspace (as) a space for
metaphors” (p18) and as a “linguistic construction” (p19).
They argue that “the matter of cyberspace is language:
it is written by it, and is navigable by it; the navigation
tools are nothing else but pieces of software, id est:
language” (p20). To study cyberspace, Cicognani
concludes, we must study language: “the characteristics
of cyberspace can be found in the characteristics of the
language(s) on which it is based” (p23).

3.4 Data models
Data models are used to describe a static model of

a system. Of particular importance are the relationships
between entities in the system. These relationships
can be expressed in words: <a plane flight may have
many passenger>, <a team must have at least two
players>, but are more usually expressed in diagrams,
Entity relationship diagrams and the like. The process
of developing a data model is essentially one of language
(Sewell and Mann 2003). We describe the system,
identify nouns, verbs, remove synonyms etc. It is very
difficult to teach this when the class doesn’t know what
is meant when the book states that relationships should
be prepositional phrases. Exercises in the structure of
language: “Flying planes ARE dangerous” vs “Flying
planes IS dangerous” would, we believe help in this area.

4. DISCUSSION
There are many cases where a study of metadata of

languages would facilitate discussions about computing
Eg IMDI metadata schema (ISLE 2001) eg could
improve user task descriptions in logical design if
included metadata information such as that described
by Johnson and Dwyer (2002). They describe
information use in the collection of examples of
endangered languages. Such an approach may also
aid in teaching students to document and understand
interactions involving the ‘new language’ of computing.

It is apparent that students may benefit from both

improved language skills an ability to understand and
use linguistic terminology. It is not clear how this should
be integrated into an IT curriculum. From a constructive
perspective, such literacy skills should be taught in the
context of IT (rather than as a prerequisite), but many
questions remain. Who might benefit from a course?
Opt-in or compulsory?

Further research is needed as to whether the
similarities between specific technical methods and
language skills are anything more than coincidence.
Questions should be focused to answer specific
questions, does, for instance, pretraining in sentence
structure improve learning in data modelling?

Future research should also use a framework for
analysis using the following components. We should
treat the ability to perform the component (eg write
grammatically correct sentences) separately to the ability
to explicitly describe the component and talk about it in
an informed way (eg rules for a what makes a correct
sentence):

♦ the structure of texts, or discourse structure;

♦ grammar and syntax, or the way words and
phrases are formed and combined (eg constituent rules
such as sentence contains noun phrase and verb
phrase)

♦ the conventions of written forms, including spelling
and punctuation;

♦ semantics, or word meanings, and the
relationships among these meanings;

♦ jargon and specific registers

♦ editing, processes of proofing, recrafting and
revision

♦ vocabulary

♦ knowledge and argument expression

5. CONCLUSION
This review has identified four roles for literacy in an

IT curriculum.
1) ability to write generally
2) ability to write in specific registers
3) strengthening language skills for imposition of a

new lexicon
4) providing a platform of skills and knowledge about

language itself to aid in learning of ideas that are to
some extent rooted in language concepts.

Literacy does have an active role in tertiary IT teaching:
it is a dual role in both meeting general and specific
needs and as such requires considerable thought about
intent and method.

353353353353353

REFERENCES
Barker, K. and Szpakowicz, S. (1995) Interactive

semantic analysis of clause-level relationship
analysis, In Proceedings of the Second
Conference of the Pacific Association for
Computational Linguistics (PACLING--95),
pages 22--30, Brisbane, Australia, 1995. http://
citeseer.nj.nec.com/barker95interactive.html

Bruce, C. S. (1997). Seven faces of information literacy.
Adelaide, AUSLIB Press

Byrne, P. and G. Lyons (2001). The effect of student
attributes on success in programming. ITiCSE,
Canterbury UK.49-52

Cicognani, A. (1998). “On the linguistic nature of
cyberspace and virtual communities.” Virtual
Reality 3: 16-24.

Evans, G. E. and M. G. Simkin (1989). “What best
predicts computer proficiency?”
Communications of the ACM 32(11): 1322-1327.

Finkel, R.A. (1996) Advanced Programming Language
Design, Addison Wesley, Menlo Park, CA

Goodwin, B. (2002, 15 August). UK employers welcome
combined degrees in finance and computing.
Computer Weekly, p.4.

Gray, W. D., N. C. Goldberg, and Byrnes, S.A. (1993).
“Novices and programming: merely a difficult
subject (why?) or a means to mastering
metacognitive skills.” Journal of Educational
Research on Computers 9(1): 131-140.

Hartman, J. D. (1989). Writing to learn and
communicate in a data structures course. ACM,
2, 32-36.

Hay, D. C. (1998). “Making data models readable.”
Information Systems Management 15(1): 21-33.

Hughes, H. (2001). Opportunities and challenges await
computer science graduates. Black Collegian,
31, 2, 68-71.

Inman, D. (1997) Syntax (in NLP) http://
www.scism.sbu.ac.uk/inmandw/tutorials/nlp/
syntax/syntax.htm accessed 15/5/03

ISLE Group (2001) Metadata elements for session
descriptors, ISME Metadata initiative, Draft
Proposal 2.4 7, http://www.mpi.nl/ISLE/
documents/ accessed 1/6/03

Jacobs, B. (2002) How to design a programming
language, a survey of scripting programming
language feature options, http://
www.geocities.com/tablizer/langopts.htm

Johnson, H., Dwyer, A. (2002) Customising the IMDI
metadata schema for endangered languages,
International Workshop on Resources and Tools
in Field Linguistics, http://www.mpi.nl/lrec/

Koepsell, D. R. and W. J. Rapaport (1995). The
ontology of cyberspace. Buffalo, SUNY Buffalo
Dept Computer Science

Kress, G. and T. van Leeuwen (1996). Reading images:
the grammar of visual design. London,
Routledge.288

McCraken, M. (and 10 others). (2002). “A multi-
national, multi-institutional study of assessment
of programming skills of first-year CS students.”
ACM SIGCSE Bulletin, 33(4):125-140

McPherson, B. (1998). Student perceptions about
business communication in

their careers. Business Communication Quarterly, 61,
2, 68-79.

Mann, S. and McGregor, G. (2002) Conversation as a
Basis for Interactivity . Proceedings of the 15th
Annual Conference of the National Advisory
Committee on Computing Qualifications, 2nd -
5th July 2002 Hamilton, New Zealand 281-288

Mayer, R. E., J. L. Dyck, et al. (1986). “Learning to
program and learning to think: what's the
connection?” Communications of the ACM
29(7): 605-610.

Miller, B. (1999). “An integrated taxonomy of student
reading and learning development.” Journal of
Further and Higher Education 23(3): 309-316.

Ministry of Education (1994). English in the New
Zealand Curriculum. Wellington

Reeves, B. and C. Nass (1996). The media equation:
how people treat computers, television and new
media like real people and places. Cambridge,
Mass, MIT press

Seersmith (2003) Studying Poetry http://
www.searsmith.net/classe101studpoetry.html
accessed 15/5/03

Sefton-Green, J. and V. Reiss (2001). Developing the
creative uses of new technology with young
people. Young people, creativity and new
technologies: the challenge of digital arts. J.
Sefton-Green. London, Routledge.

Smith, J. H. (2002). The dragon in the attic - on the
limits of interactive fiction. 2002.http://
www.game-research.com/ar t_dragon
_in_the_attic.asp

Sewell, A. and Mann, S. (2003) Data modelling
approaches: divergence in practice. This volume

Tench, R. (2001). Perceptions of competence in public
relations students’ writing. Education & Training,
43,2/3, 94-104.

Unsworth, Len (Ed.) 1993, Literacy learning and
teaching : language as social practice in the
primary school, Macmillan Education, South
Melbourne

Walsh, E. (2003) “Execution”, http://liz.aura.dhs.org/
poetry.html

354354354354354

NZ_Inst1 1995/6 1997/8 1999 00 2001 2002

People Staff Development (2-4) L2 L3
 Staff and student support (2-4) L2 L3
 Reward systems (3-4)
 Specialisation (3-4) L2 L3
 Opportunities for sharing (3)
Processes Course Planning (2-4) L2 L3
 Quality Assurance (2-4) L2

 e-learning project management
(2-4)

L2 L3

 Instructional Design (2-4) L2
 Funding (2-4) L2 L3
 Standards (2-3) L2 L3
 Reuse (2-3) L2 L3
 Continuous improvement (5)
 Knowledge management (5)
Technology Network Infrastructure (2) L2

 E-learning Infrastructure (2-3) L2

 Integrated Infrastructure (4) L4

 Change management (4-5) L4

 Technology diffusion (5)

NZ_Inst2 1995/6 1997/8 1999 2000 2001 2002
People Staff Development (2-4) L2
 Staff and student support (2-4) L2
 Reward systems (3-4)
 Specialisation (3-4) L2
 Opportunities for sharing (3)
Processes Course Planning (2-4)
 Quality Assurance (2-4)

 e-learning project management
(2-4)

 Instructional Design (2-4)
 Funding (2-4) L2
 Standards (2-3)
 Reuse (2-3)
 Continuous improvement (5)
 Knowledge management (5)
Technology Network Infrastructure (2) L2

 E-learning Infrastructure (2-3) L3

 Integrated Infrastructure (4)

 Change management (4-5)

 Technology diffusion (5)

APPENDIX A CASE STUDIES ON ECM2 (CONTINUED
FROM PAGE 348)

