
6 36 36 36 36 3

Fu
ll

pa
pe

r i
n

Pr
oc

ee
di

ng
s

of
 th

e
16

th
 A

nn
ua

l N
A

C
C

Q
, P

al
m

er
st

on
 N

or
th

, N
ew

 Z
ea

la
nd

, J
ul

y,
 2

00
3

(e
ds

) M
an

n,
 S

. a
nd

 W
ill

ia
m

so
n,

 A
. w

w
w

.n
ac

cq
.a

c.
nz

ABSTRACT
Introductory computer programming is

notoriously difficult to teach, with both research
and anecdotal evidence indicating that many
students struggle with these courses, and gain
only very limited programming skills from them.
In the modern curriculum, this problem is
exacerbated by the need to acquaint students
with a wide variety of programming languages,
paradigms and software architectures. At Otago
Polytechnic we are currently developing a
sequence of introductory programming courses
that we hope will provide students with good core
programming skills and competence in both the
Procedural and Object-Oriented paradigms. The
courses are designed to be tractable for novice
programmers, while still satisfying the modern
end-user’s high expectation of what a computer
program should do. In this paper we discuss our
underlying educational philosophy, give examples
of the instructional material, and look briefly at
student performance during the first presentation
of the course.

1. INTRODUCTION
It is not easy to teach someone to program.

Since computer programming first entered the
common curriculum, educators have agonised
over the poor performance of students in
introductory programming courses (Decker &
Hirshfield, 1993; McCracken, 2001). The situation
has been exacerbated in recent years by the
exploding popularity of Object-Oriented
Programming. It was difficult enough to teach

procedural programming alone; it seems more than
twice as difficult to produce students who can use either
paradigm. If we insist that our students first acquire
traditional programming skills, they struggle with the
“paradigm shift” when we attempt to introduce Object-
Oriented logic (Guzdial, 1995; Bergin, 2000). If we try
to avoid the paradigm shift by starting with Object-
Oriented programming, we produce Object-Oriented
designers who don’t have the basic programming ability
required to actually implement the elegant class
structures they design (Duke, et al., 2000).

At Otago Polytechnic we are attempting to address
these issues with a new two-semester introductory
programming sequence that we hope will act as a bridge
between traditional procedural programming and
advanced Object-Oriented system development. The
design of the course rests on the following philosophical
principles:

1. Basic programming skills (variable declaration
and usage, conditionals, loops and basic data
structures) are essential for success with any
programming paradigm.

2. The more experience one has with the procedural
paradigm, the more difficult it is to shift to the Object-
Oriented paradigm.

3. Students are most likely to persevere with a
difficult task if the process is fully engaging, and the
end result is satisfying.

4. Students will learn most comfortably if new skills
build seamlessly upon existing skills.

In this paper we will discuss how we have applied
each of these principles to the design of our new
programming course. We will detail the use of Microsoft
™Agents, a programming component that we have
found especially useful for building programming tasks.

The Trouble with Teaching
Programming

Patricia Haden
Dr SAmuel mann

School of Information Technology and Electrotechnology
Otago Polytechnic

Dunedin, NZ
Phaden@tekotago.ac.nz

6 46 46 46 46 4

Finally, we will discuss our observations of student
performance during the first offering of this course.

2. THE COURSE PHILOSOPHY
Basic programming skills are essential for
success with any programming paradigm.

A growing body of evidence indicates that,
especially for the design of large systems, Object-
Oriented programming is an efficient technique which
produces robust and reusable code. However, designing
an Object-Oriented system requires more than the
production of an elegant UML diagram. At some point
the code for the methods must be written, and this
involves manipulation of data structures and proper
flow of control, which are the core components of the
traditional programming course. Recent evidence
(Duke. et. al, 2000) indicates that students whose first
introduction to programming is in an Object-Oriented
environment may fail to acquire these basic
programming skills. Duke et. al. state that “in later
years, students who have not adequately mastered
these basic programming skills (using while loops and
Boolean expressions to capture a system’s internal
logic) may be able to create higher-level designs, but
struggle to convert those designs into actual code.”
(p.84).

To insure that our students have the core skills
required to allow them to implement the Object-
Oriented systems they will one day design, we start
them off with a 12-week introductory course in Pascal
(PR104). This course, which closely follows the classic
introductory programming curriculum, is taught using
Turbo Pascal 7.0 with console input and output. The
emphasis of the course is on issues of syntax, handling
of variables and simple data structures, and the use
of booleans, conditionals and loop constructs to
implement correct program logic. Students are not
permitted to proceed to the next course in the
programming sequence until they have mastered this
basic material.

The more experience one has with the
procedural paradigm, the more difficult it is to
shift to the Object-Oriented paradigm.

Various authors have explored the great difficulty
encountered when trying to teach Object-Oriented
programming techniques to experienced procedural
programmers (e.g. Turk, 1997; Nelson, Armstrong &
Ghods, 2002). The generally accepted explanation for
this difficulty is that well-learned procedural patterns
interfere with the development of new, sometimes
orthogonal Object-Oriented patterns via the established
psychological phenomenon of retroactive inhibition
(colloquially, ‘you can’t teach an old dog new tricks’).
To minimise the impact of retroactive inhibition, we

want to expose our students to the concepts of Object-
Oriented programming as soon as they are comfortable
with the basic mechanics of programming, but before
they have become set in their procedural ways. To
this end, as soon as students have completed twelve
weeks of introductory Pascal training in PR104, they
proceed to the second course in the sequence
(OO104) where, by easy stages as described below,
they are introduced to the Object-Oriented paradigm.
With only twelve weeks of training in traditional
procedural programming, we believe that students will
view Object-Oriented logic as just another new skill
set, no more alarming than the syntactic rules they
learned in Introductory Pascal.

Students are most likely to persevere with a
difficult task if the process is fully engaging,
and the end result is satisfying.

There is considerable evidence that students learn
most effectively when their learning tasks are engaging
– that is, both entertaining and personally relevant
(Webster & Ho, 1997; Kearsley & Shneiderman,
1999). This observation applies as much to computer
programming as to any other discipline (Guzdial &
Soloway, 2000). As educators we must acknowledge
that today’s students have a different relationship with
computers than we had when we were learning to
program some decades ago. Accustomed as they are
to using modern GUI applications for work and
recreation, they have very high expectations for what
they should be learning to make computers do (cf.
Stein, 1998). Writing “Hello World”, or producing a list
of the powers of 2 no longer produces the frisson of
excitement it might have for those of us who remember
programming with punch cards. We have an obligation
to enable students to produce programs which give
them that same thrill, and we must do so in the context
of their a priori experience.

To this end, we teach our second programming
course using Borland Delphi. Delphi is an RAD tool
comprised of an authoring environment that makes
construction of GUI nearly trivial, a robust hybrid
Object-Oriented programming language in Object
Pascal, and an extensive set of libraries and
extensions that insure it will satisfy a student’s
programming needs for many years.

As Object Pascal is essentially a superset of the
Turbo Pascal dialect with which they are already
familiar, our students can use Delphi from the first day
of the course. With Delphi’s simple screen design
facility and powerful built-in image manipulation tools,
we are able to very quickly have our students
completing laboratory tasks that they consider to be
“real programs”. Figure 1 shows a screenshot of a
“Slot Machine” game that students build during the

6 56 56 56 56 5

second two-hour laboratory session of the Delphi
course. Students are able to make the program “spin”
the images, randomly assign final images to each
location, and keep track of the money won and lost
by the user. In our first instantiation of the Delphi course
this task was completed successfully by 100% of the
students.

All the material in the Delphi course is designed to
maximise the student’s feeling of engagement with
the tasks, satisfaction with the work they produce,
and sheer enjoyment of the process. During the 12
weeks they spend in the Delphi course they build a
variety of games including Horse Race, Memory
Match, Noughts and Crosses and even a Delphi version
of Space Invaders (cf. Parnaby, 2001). They have an
opportunity to experiment with a variety of graphic
applications that draw moving shapes, shuffle pictures
like a jigsaw puzzle, simulate molecular dispersion
and implement Conway’s Game of Life. By using the
Microsoft™Agent ActiveX Control (Microsoft™ 2003)
students are even able to produce professional quality
animation after only a few hours of laboratory work.
The result of the “fun” focus of our course materials is
that laboratory attendance is essentially 100%,
students work happily outside scheduled course times
and enthusiasm is high.

However, a fun course that teaches nothing is of
little value. Thus, while designing our course material
to maximise engagement, we also insure that the
programming tasks require the acquisition of
necessary skills and concepts, and that the new
material introduced in each lesson builds as much as
possible on that learned in earlier lessons.

For example, to build the Slot Machine game,
students must first come to understand the event-driven
interface model. They must learn to place Delphi
button, text and image components onto a form, to
move between the Delphi screen painter and the
programming environment, to manipulate the
components via their public methods, to invoke some
of Delphi’s primitive built-in functions and to actually
write the code to make it all go. In the following week’s
assignment they build upon these skills by meeting
one of Delphi’s non-visual components: the TTimer.
Although some students are puzzled at first by the
notion of placing a component that has no visual
representation at runtime onto a Form, they quickly
realise that “talking to” a TTimer follows exactly the
same principles as “talking to” a TButton: one simply
invokes its public methods and properties.

Students will learn most comfortably if new
skills build seamlessly upon existing skills.

The shift from procedural programming to Object-
Oriented programming need not require an abrupt
qualitative jump. Once students accept the event-
driven programming model (and this is a very natural
model for any experienced Mac/OS or Windows user)
it is easy to introduce them to Delphi components
such as buttons. They are very comfortable writing
OnClick handlers for buttons using the Pascal syntax
and control structures with which they are already
familiar. The only novel syntactic construct they must
acquire is dot notation, and they are happy to view
this as similar to the syntax for field references when
using records. A bit of anthropomorphism (“To tell this
TButton to change its caption, you simply say
MyButton.caption :=….”) is all that is required. Thus,

Figure 1. Screenshot Of Slot Machine Game.

6 66 66 66 66 6

with only a brief introduction, our students can produce
working Delphi applications.

Through the use of Delphi components we introduce
our students gradually to some of the basic concepts
of Object-Oriented programming such as
encapsulation, information hiding, and the
communication of two objects via message passing.
We do this without new vocabulary or intimidating
theoretical discussions. It is accomplished by having
students change the colours of TShapes without
worrying about the details of how they are drawn on
the screen, by having them control the behaviour of
the TTimer without understanding exactly how it knows
when to fire, by having a button send a message to an
Microsoft ™Agent character to produce a complicated
animated sequence when they themselves can’t draw
a good stick figure. They understand that these
components distinguish between their interfaces and
their implementations, that the latter are hidden from
us and we communicate via the former, that each
object has certain behaviours and certain
responsibilities in the applications that they build.
When, at a later point in the course we do begin to
discuss the various formalisms of the Object-Oriented
method, students should recognise it as simply an
extension of the concepts they have already become
comfortable using in their programming assignments.
Thus we see the Delphi course as providing an easily
traversed bridge between their early procedural training
and the conceptual understanding required for more
advanced Object-Oriented programming, analysis and
design.

3. STRUCTURE OF THE
DELPHI COURSE

The Delphi course runs over a period of 11 weeks
during the second two-thirds of each semester. Each
week the course comprises one one-hour lecture and
two two-hour labs. The lectures are reserved for the
introduction and discussion of theoretical material. The
labs are completely hands-on, in keeping with the
Otago Polytechnic’s general highly applied educational
philosophy. Laboratory sessions contain a maximum
of 17 students; sufficient student streams are
scheduled to maintain this maximum class size. The
labs for each stream are taken by a single instructor
throughout the term.

For each of the two laboratory sessions, the
students receive a detailed handout which presents
new content material and contains a series of
programming tasks. The first of the two laboratory
sessions each week is run as a “group programming”
exercise where new material is discussed, and the

students and tutor work through the programming tasks
together. The second lab each week is comprised of
one or two larger programming tasks, and includes
minimal new material. Students perform these tasks
on their own, with instructor support. These tasks
generally include a number of “optional extensions” to
challenge the more able students, while still permitting
the average student to achieve the satisfaction of a
complete programming project (cf Lister & Leaney,
2003).

The first two weeks of the course are primarily
devoted to familiarising the students with Delphi and
building GUI, event-driven applications. The next four
weeks are spent extending their general programming
skills while continuing to practice using various
complex Delphi components, and emphasising the
interface/implementation distinction that allows us to
use the complex entities. The behavioural complexity
of the components used extends from the TLabel,
which simply displays text at a user-determined size
and font, all the way to the Microsoft™Agent, which
provides complex animation sequences, text-to-
speech translation and complex object
synchronisation. The tasks involving Agents are among
the most popular with students; some of them are
detailed in the next section. In the sixth week of the
course we introduce the Object-Oriented formalism,
and reveal to the students that they have, in fact been
doing a bit of Object-Oriented programming all along.
In the eighth week students launch into full Object-
Oriented coding, by creating their own classes. We
will discuss their performance below.

4. EXAMPLES OF TASKS
USING AGENTS

We want the programming tasks we assign our
students to simultaneously consolidate their basic
programming skills, familiarise them with the use of
abstract data classes, entertain them and provide a
sense of satisfaction in the production of a software
product that actually does something. All of Delphi’s
components provide these features to some degree,
but the most dramatic success in our experience is
obtained using Microsoft Agents.

Microsoft Agents are animated characters that
provide text-to-speech translation and complex
animation sequences through a relatively simple set
of interface commands. Their behaviours can be
managed in a Delphi project using standard flow of
control techniques, and they interface easily with other
Delphi components. They are also a lot of fun.

We introduce the Agents very early – during the
third laboratory session of the course – in the context

6 76 76 76 76 7

of a discussion of Information Hiding. Agents are
presented as a component with an extremely complex
implementation and a comparatively simple interface.

 Students first learn how to install the Agent ActiveX
control into Delphi. They are taught to place an Agent
component onto their Form, just as they would place
a button onto their Form. They declare Agent variables
(variables of type IAgentCtlCharacter), and recognise
that this is logically equivalent to declaring a variable
of type integer or type string. They are shown how to
initialise the component and assign Agent characters
to Agent variables. They are given the syntax of the
Agent’s speak and play methods, and a list of the
arguments that can be passed to the play method
(each corresponds to an animation clip). They are then
encouraged to experiment with these methods. Two
typical screenshots are shown in Figure 2 (sample
code is shown in Appendix A - pg108).

 Students perform this first Agents task with great
enthusiasm, and with a 100% success rate. In the
lecture given later that week, we discuss the principles
of abstraction and information hiding, and emphasise
how nice it is to be able to use a complex data object
like Agents, without having to manage the details of
their behaviour.

As the course progresses we revisit Agents at
various points. Agents are added to the Slot Machine
game to give the user feedback about his result and
winnings; Agents are used to demonstrate the use of
Menus; Agents are used to demonstrate the
synchronisation of component behaviour via message
passing.

At week six when we introduce classes, objects,
encapsulation, responsibility and the other formalisms
of the Object-Oriented paradigm, they can be easily
explained in terms of the now familiar Agent
component. Students understand that Peedy and
Merlin are objects, examples of the class Agents. They
understand that all Agents have behaviours like speak
and play, because they have often instructed Peedy
and Merlin to perform those behaviours and observed
their actions in response. They understand that the
responsibility for implementing these behaviours lies
with the object; the user need only invoke the interface.
Thus students recognise objects and classes as
familiar entities, not as something new and alarming.

5. HOW DO WE DEFINE
“GOOD PROGRAMMER”?

We naturally hope that our approach to the
teaching of Object-Oriented logic will allow students
to move without distress from the procedural paradigm
to the Object-Oriented paradigm. We want them to be
“good Object-Oriented programmers”. Unfortunately,
there seems to be no clear metric for what constitutes
a “good Object-Oriented programmer”; there are
precious few metrics for what constitutes a good
programmer at all (e.g. Barr, et. al., 1999; and see
Fincher, 1999). Do we want them to write efficient code
or readable code? Do we care most about robust bug-
free code, or are we concerned more with the elegance
of the algorithm? Does it matter if students’ Object-
Oriented programming is not entirely pure, as long as
it meets all the functional requirements for the task?
These questions are difficult enough to answer without
even addressing the fact that terms such as “readable”
and “elegant” are without any clearly defined
operational definition. What data are we to collect and
analyse when we wish to measure our student’s
programming skill?

In the literature, authors tend to use expressions
like “the students seem to understand the concept” or
“most students seemed confused by the task”.
Occasionally authors provide the results of student
self-reports of the degree to which they found the
course presentation “useful”, or “confusing” or
“interesting”. None of these approaches is specific
enough to allow us to compare in a rigorous fashion

Figure 2. Example Screens From First
Agents Task

6 86 86 86 86 8

the success or failure of a given programming course
in producing “good programmers”.

We see the need for developing a satisfactory
metric for programming ability as being essential to
the sensible comparison of pedagogical approaches,
and thus to the development of a truly effective
curriculum. However the lack of such a metric in the
literature highlights the difficulties involved in its
development. We consider this an exciting area for
further research.

6. DETERMINING THE
EFFECTIVENESS OF OUR
DELPHI BRIDGE

To analyse the success or otherwise of our new
Delphi course, we intend in the first instance to adapt
the technique of Robins et. al. (2001). Robins et. al.
have defined a list of 36 types of errors seen in their
introductory Java programming course at the University
of Otago. These errors are grouped into three
categories: problems with basic tools (i.e. trouble with
the authoring environment itself); problems with
programming logic; and problems with the
programming language. In assessing the performance
of their own students, they observed them at work on
a variety of programming tasks, and studied the pattern
of errors made on each task. The classification they
define gives good coverage, and includes all the errors
that programming instructors commonly see their
students make.

For our purposes, we have simplified the checklist
and modified it for Delphi. During our students’ first
two laboratories on Object-Oriented programming, we
observed their performance, and classified the errors
they made. Whereas Robins et. al. recorded student
difficulties only when a student specifically requested
help, our smaller class size allowed us to monitor each
student’s performance throughout the task. We thus
observed both problems that students were able to
resolve themselves, and problems that required tutor
support.

Students had been achieving near 100% success
on the laboratory session tasks to this point in the
class, and since we believed the first Object-Oriented
task to be of a comparable difficulty, we would have to
interpret any significant failure rate with the first Object-
Oriented task as an indication that our “gentle bridging”
approach was not entirely successful. Alternatively, if
students were comfortably able to complete their first
Object-Oriented task, we could conclude that our
combination of core skill training, gradual introduction
of concepts and elevated engagement had served to

move students smoothly from the procedural to the
Object-Oriented paradigm.

7. STUDENT PERFORMANCE
With our small class sizes, and with only two

laboratory sessions available for student observation,
we were able to collect only a very limited amount of
data; future presentations of the course will allow us
to continue the observation process. However, even
with such a small sample, patterns of student
performance were apparent, and as a reflection of the
success or failure of our approach, the results are
mixed. Students were unable to achieve the 100%
completion rate that we hoped for without significant
tutor intervention, but the errors they made were
systematic, and in one case seem to indicate a
confusion more with the syntax of Object Pascal than
with the core concepts of the Object-Oriented
paradigm. Since predictable misunderstandings are
the easiest to resolve, and task completion was very
high with tutor support, we find these results
encouraging.

7.1 Grasp of Core Concepts
Students were extremely comfortable with the notion

of defining classes. All students were able to respond
correctly to questions such as “What properties
should class TLibraryBook have?” and “What methods
do we need for THorseRacer”? All students were able
to correctly declare their classes in Delphi, using the
private and public keywords as appropriate to
distinguish between fields and methods. Further, when
provided with a prewritten class, students were all able
to correctly declare class instances as variables, and
to correctly invoke their methods using dot notation.

7.2 Confusion of Class
Declaration and Class
Instance

The student’s main difficulty arose in the
implementation of methods. For example, students
were instructed to create a class TSquare, that had
properties sideLength, Colour, XCoordinate and
YCoordinate, and methods SetMySideLength,
SetMyColour and DrawMe. We provided students with
an OnClick handler that declared a variable Square1
of type TSquare, and set its SideLength property via
the call: Square1.SetMySideLength(50).

Unfortunately, when we asked students to
implement the SetMySideLength method, they
invariably wrote:

6 96 96 96 96 9

Procedure
TSquare.SetMySideLength(n:integer);
Begin
 Square1.SideLength := n;
End;
That is, they referred to a class instance inside

the definition of the method. After several weeks of
Delphi programming, where all properties and methods
are referred to using this dot notation, students were
extremely reluctant to simply (and correctly) write:

Procedure
TSquare.SetMySideLength(n:integer);
Begin
 SideLength := n;
End;
In one laboratory class of 11 students, every single

student made this error. A common student question
was “How does it know whose SideLength property to
use?” When the tutor explained that the system would
use the SideLength property of the invoking object,
the student would exclaim and nod, and, invariably,
proceed to make exactly the same error when defining
the next method.

We are currently running our third Object-Oriented
laboratory session, and students continue to struggle
with this construct. Although they claim to understand
the distinction between the class definition and
instances of the class, when they write code for a
method, they still want to have an instance of the class
to refer to. The notion of writing their code for
“whichever class instance calls the method” is
extremely difficult for them to grasp.

Robins et al. call this problem “Class vs. Instance”
and observed it with their students, although
proportionally less than we do. We suspect that this
is because of our students extensive pre-exposure to
the dot notation during the procedural weeks of the
course. Robins’ Java course does not have this
procedural component. Perhaps the retroactive
inhibition responsible for the traditional paradigm shift
problem is not localized to experienced programmers,
but to individual constructs that are highly familiar. In
future presentations of the course we will need to
explore ways of avoiding this problem. Our first instinct
is to emphasize the difference between class definition
and class instance from the introduction of our first
simple Delphi component. It may be helpful to show
students a simplified version of some of the methods
for buttons and labels, demonstrating that they contain
no instance reference.

7.3 Trouble with a Syntactic
Anomaly

The second common error made in these early
exercises also seems to reflect student’s pre-exposure
to Delphi syntax. The ordinary method call in Delphi
has the form ObjectVariable.MethodName. The
exception to this is the create method, where the
syntax is ObjectVariable := ClassName.Create. In
their first programming tasks, students consistently
attempt to call ObjectVariable.Create. We view this
as actually quite sensible, and the required syntax as
an anomaly. It does, however, demonstrate again the
impact of student’s prior experience using the dot
notation to reference preexisting Delphi objects.

7.4 Facility with Basic Coding
We were pleased to observe that, when the errors

described above were resolved, our students were able
to implement relatively complex behaviors involving
branching, looping and traversal of arrays within their
class methods. Thus our emphasis on students’
developing good basic Pascal skills has facilitated this
aspect of their Object Oriented development. We are
optimistic that once they become more experienced
with “thinking Object-Oriented” they will be able to
produce elegant and robust Object-Oriented
applications.

8. SUMMARY
Tertiary institutions around the world are struggling

to find the optimal technique for producing
programmers who can write commercial quality code
using a variety of tools and paradigms. The course we
are now developing at Otago Polytechnic hopes to
instill strong programming skills and an awareness of
the variety of possible programming paradigms in the
first year.

Our first experience with the course has
demonstrated that it is possible to design course
materials that are engaging and tractable for students
who have only a limited amount of programming
experience. Use of advanced Delphi software
components serves to consolidate mechanical
programming skill while simultaneously introducing
students to the concepts of encapsulation and
inheritance without the complexities of a new
formalism. When that formalism is later introduced,
students accept the concepts with ease due to their
familiarity.

Unfortunately, the mechanics of implementing these
concepts still flounders on the rocks of students’ prior
habits with the language. Students seem to learn to

7 07 07 07 07 0

use complex components without gaining an
understanding of the distinction between the generic
class and the specific object instance. We intend to
explore ways of modifying the course to address this
problem.

Integral to the question of whether a course is
effectively producing good programmers is the need
to be able to quantify “good programming”. It is not
possible to compare accurately different pedagogical
methodologies without having some metric for
measuring student’s programming skills. This question
is somewhat neglected in the literature, with only a
few attempts being made at developing a precise
metric. We consider the development of such a metric
to be essential, and plan to devote further research
efforts to it. It is important that such a metric measure
programming skill in the early stages, when expertise
cannot be expected. An accurate technique for
understanding early programming performance is
necessary before we can build a first course that
consistently starts our students on the long road to
becoming Good Programmers.

REFERENCES
Barr,M., Holden,S., Phillips,., Greening,T. (1999)

“An Exploration of Novice Programming Errors
in an Object-Oriented Environment”, SIGSCE
Bulletin, 31,4:42-46.

Bergin, J. (2000) “Why Procedural is the Wrong First
Paradigm if OOP is the Goal” , http://
c s i s . p a c e . e d u / ~ b e r g i n / p a p e r s /
WhyNotProceduralFirst.html

Decker, R. and Hirshfield, S. (1993) “Top-Down
Teaching: Object-Oriented Programming in
CS1”, ACM 24th CSE, 1993.

Duke, R.. Salzman, E., Burmeister, J., Poon, J.,
Murray,L., (2000) “Teaching Programming To
Beginners – Choosing The Language Is Just
The First Step”, Proceedings of the Australasian
Conference on Computing Education, pp. 79-
86, December 2000, Melbourne Australia.

Fincher, S. (1999) “What are we doing when we teach
programming?”, 29TH ASEE/IEEE Frontiers in
Education Conference, November 10-13, 1999,
San Juan, Puerto Rico.

Guzdial, M. (1995) “Centralized Mindset: A Student
Problem with Object-Oriented Programming.”,
SIGCSE’95, 3/95 Nashville TN.

Guzdial, M. and Soloway, E., (2000) “Teaching the
Nintendo Generation to Program”,
Communications of the ACM, 45,(4): 17-21.

Guzdial, M., (1995) “Centralized Midnset: A Student
Problem with Object-Oriented Programming”,
SIGSCE ’95, Nashville TN.

Kaasboll, J. (2000) “Learning and Teaching
Programming”, Lecture at Interface 2000,
University of Pretoria, 19-20 May, 2000.

Kearsley, G. & Sheniderman, B. (1999)
“Engagement Theory: A Framework For
Technology-Based Teaching And Learning”
ht tp : / /home.sprynet .com/~gkears ley/
engage.htm

Lister, R., & Leaney, J. (2003) “Introductory
Programming, Criterion-Referencing and
Bloom”, SIGCSE’03, February 19-23, Reno,
Nevada.

McCracken, M., Almstrum, V., Diaz, D., Guzdial,
M., Hagan, D., Kolikant, Y., Laxer, C.,
Thomas, L., Utting, I., & Wilusz, T. (2001) “A
multinational, multi-institutional study of
assessment of programming skills of first-year
CS students”, ACM SIGCSE Bulletin,
33(4):125-140.

Microsoft ™ (2003) http://www.microsoft.com/
msagent/default.asp

Nelson, H.J., Armstrong, D.J., & Ghods, M. (2002)
“Old Dogs and New Tricks”, Communications
of the ACM, 45,(10):132–137.

Parnaby, O. (2001) “A Space Invaders Clone in Delphi”,
http://www.sebas.vic.edu.au/staff/oparnaby/
delphi/spaceinvaders/spaceinvaders.htm

Robins, A., Rountree, N., Rountree, J. (2001) “My
Program Is Correct, But It Doesn’t Run: A Review
Of Novice Programming And A Study Of An
Introductory Programming Paper”, University of
Otago Technical Report, OUCS-2001-06.

Stein, Lynn Andrea (1998) “What We’ve Swept Under
the Rug: Radically Rethinking CS1.”, Computer
Science Education 8(2):118-129.

Webster, J & Hayes, H. (1997) “Audience
Engagement in Multimedia Presentations”,
ACM SIGMIS Database, 28,(2):63-77.

Appendix containing sample code on page 108

