
279

Concise paper

Putting .NET Web Forms in the
Frame

John Peppiatt

ABSTRACT
The concept of HTML Frames, and their more restricted relation,
in-line frames (IFrames), were never designed to assist with web
application development. In fact, as many commentators have
noted, neither HTML nor the HTTP transport were designed
to support state-full web applications at all. None-the-less, the
internet, supported by current browser technology, is being used
as a major platform for application delivery and frame technology
offers a tantalising mix of real-estate management and logic
encapsulation.
Historically, HTML Frames were introduced to support the
viewing of more than one page in the browser’s window. In
conjunction with the DHTML object model, Javascript techniques
can be used as a client side technology to make frames inter-
operate; the most common example being content navigation
through one frame and main page display through another. The
introduction by Microsoft of .NET web forms provide a rich
server centric programming model for web applications but
nothing in .NET provides server side support for an application
made up of interoperating frames.
This paper looks at some very simple technology that provides a
server side paradigm for the development of web applications with
Frames. The architecture is described and the basic mechanisms
are illustrated.

1. INTRODUCTION
Information Technology rarely seems to

evolve to fit a well thought out strategic plan.
Innovation comes from many sources and many
technologies are created; some (not always the
most deserving) gain traction and market influ-
ence - thereafter other technology is grafted on
top to address requirements that were never
a part of any innovator’s vision. A prime ex-
ample of this must be the evolution of internet
technologies; these have evolved from a simple
method of rendering and linking documents to
a rich platform for hosting interactive applica-

 Mike Lopez

Manukau Institute of Technology
Manukau, New Zealand

john.peppiatt@manukau.ac.nz

tions. This paper is about a technique that helps
expand the paradigms available for devising web
based applications. It is presented in the context
of Microsoft’s Visual Studio .NET WebForm
architecture but the concept can be applied to
many web development frameworks.

2. BACKGROUND
The authors observed that many web based

applications organize GUI real estate into logical
regions where some regions remain relatively
static and other regions are used to display re-
sponses to requests. Despite this intention, the
techniques used to achieve this are visually
irritating (because regions are often repainted
despite there being no change), and the coding
techniques that are used poorly encapsulate the
purpose. The other curiosity is the fact that al-
though HTML (see www.w3.org/TR/html401)
has evolved to incorporate the ability to organize
the browser’s display into regions - through the
use of HTML FRAMESET and IFRAME (inline
frame) tags (see www.w3.org/TR/html401/pres-
ent/frames.html) - these are rarely exploited to
devise interactive applications. In fact the www.
w3.org site describes FRAME technology as
purely a means of presenting content in regions.
Other bodies, such as the Web Design Group
http://www.htmlhelp.com/design/frames/usage/,
also promote the use of frames purely for content
organization and thus emphasize this prevailing
paradigm. There is however linguistic support
for cross-frame operations in JavaScript and
this offers the potential for creating a richer user
experience.

http://www.w3.org
http://www.w3.org
http://www.htmlhelp.com/design/frames/usage/

280

3. SOLVING THE PROBLEM
The authors surmised that there must be rea-

sons why FRAME and IFRAME concepts are not
frequently used - despite their obvious potential.
The authors identified several possible reasons

• The history of HTML technology it-
self. HTML is essentially a document oriented
technology. The programmatic generation of
documents through scripting techniques, and
the modern document generation techniques
like WebForms and JSP (that stemmed originally
from CGI, ISAPI, NSAPI concepts) focused on
generating single documents.

• FRAMESETs and to a lesser extent IF-
RAMEs were designed to present static unrelated
(or loosely coupled) documents side by side;
they were not designed to present an application
interface.

• Although client side scripting (e.g. Ja-
vascript) provides a mechanism for changing the
contents of FRAMEs and IFRAMEs, there is no
natural way of addressing this during the server
side creation of a document

• Mainstream development tools such as
Microsoft’s Visual Studio .NET do not present
a standard design pattern (project type) for de-
veloping solutions this way and developers are
inclined to adopt standard patterns offered by
tool vendors.

To progress the problem the authors took
the view that if a technology was introduced
that made the management of FRAMEsets and
IFRAMEs simple at the document generation
stage a new paradigm could evolve.

4. EXPLORATION OF
TECHNOLOGY

The technical problem to solve was to create
a mechanism by which content could be created
during the generation of an HTML document
which, when pushed out to the client, manages
the content of a FRAME of IFRAME. Unfortu-
nately, HTML and the client side event model
defined in DHTML have lead to the mainstream
browsers compartmentalizing the rendering
process into regions and limiting the commu-
nication between FRAMEs even at the client
side. None-the-less, it is possible to affect a pull

(navigate) operation in one FRAME by executing
JavaScript from a document loaded in another.
The approach the authors took was to simulate a
server side push by rendering the JavaScript code
to affect a reload operation in another FRAME
immediately the browser began rendering the
returned document.

By way of explanation, consider the diagram
below (Figure 1).

Figure 1
The rectangles A,B,C represent three FRAMEs

in an HTML FRAMESET. B contains a docu-
ment with an HTML form (e.g. .NET WebForm).
When the form is transmitted to the server a new
document is returned and is rendered in FRAME
B. During the rendering process JavaScript code
transmitted as a part of the new document is
executed by the browser which causes navigate
operations to occur to one or both of FRAMEs A
and C. The navigate operations can either be to
static pages or more typically to other dynami-
cally generated pages (e.g. other WebForms).

Almost by definition, an application con-
structed this way must be viewed as the ag-
gregation of the documents that are currently,
or can potentially be, displayed together with
an underlying state that controls the aggregate
behavior. Fortunately, any state management
approach that works by means of a browser avail-
able handle (e.g. cookie that is available across
FRAMEs) can be used to identify a server side
state store (e.g. WebForm sessions). Failing this,
query strings can be used in the urls to navigate
to content.

281

5. IMPLEMENTATION
To prove the operation of this technology and

to achieve developer convenience the authors
developed a reusable web control, called a Fra-
meController, to extend the developer framework
in Visual Studio. The technology was then used
in production for several products currently in
use at Manukau Institute of Technology.

For those familiar with Microsoft’s Web-
Forms, this web control is a component that is
visible at design time but has no visual represen-
tation at run time. It has one simple method,

AddRequest(framename as string, url as string
, optional iframe as boolean=false)

In the context of a page processing cycle for
a document from frame B, one or more requests
can be sent. E.g. if fmc is an instance of the
component then
fmc.AddRequest(“C”,”frmContents.aspx”)
fmc.AddRequest(“A”,”frmBanner.aspx”)

causes both frames C and A to be reloaded
once the browser begins rendering the document
returned as a request from frame B. To manage
state, the authors typically use a single WebForm
Session object for the complete definition of
state; this is passed between all cooperating pages
in the application.

6. ISSUES ENCOUNTERED
The technology was initially developed and

tested totally within Visual Studio using Internet
Explorer and worked exceptionally well. Several
production Web sites used mainly in an Intranet
context at MIT were developed this way; how-
ever as often happens users began experimenting
with different browsers (specifically FireFox)
and found the technology did not function. In-
vestigation revealed the problem to be due to
differences in the dialects of Javascript supported
by the different browsers. A form of Javascript
was found that was supported by both browsers
but it does highlight a weakness generally when
using DHTML techniques on web sites.

The second issue that arose when one of the
authors had elected to use a query string style
URL to pass parameters between frames. In this
scenario, the way a browser (or indeed a proxy)
is set to cache a page can result in no message
being sent to the server (the browser decides it

has the data and blocks the request). Although,
changing the caching options on the client can fix
the problem, the authors found that incorporat-
ing the HTML META tags designed to control
the caching in the document will generally work
– provided the browser is sufficiently capable.

7. COMPARISONS WITH
OTHER APPROACHES

To some extent, IFRAMEs evolved to provide
the ability to create (or reference) a ‘document
within a document’. There are some major
limitations of working purely with IFRAMEs:-

• It invites a monolithic approach to a
complex design problem.

• It fails to offer the inbuilt features of the
browser to allow the user to resize FRAMES.

• The container document is also redrawn
- which is visually distracting.

• Larger data transfers from the server
make the process ‘clunky’

The other common techniques include
• The use of server controls to help partition

the logic of a complex document. These fail to
address the repainting and resizing problems.

• The use of client side plug-ins to down-
load into the client (e.g. Flash or ActiveX) or
extensive use of JavaScript. These techniques
require the developer to continuously choose
where logic is placed – client side or server side
– and more often than not a muddled solution
results.

 The approach described invites the developer
to create an application that

• is made of pages where state is shared
through a well encapsulated medium,

• the rendering of regions is simple and
independent

• the philosophy of WebForms - minimize
the need to work with client side logic - is pro-
moted

8. CONCLUSION
This paper is primarily about a paradigm for

interactive web page development and secondly
about some technology that has been developed
to enable the practice. Undoubtedly, new genera-

282

tions of development tools will emerge that allow
developers to produce web applications that:-

• begin to resemble the richness of Win-
form type GUI functionality

• promote well layered coding techniques
• speed up the development cycle.
For a while at least, the technique just de-

scribed is, like many innovations, grafted onto
other technology to remedy a weakness - not just
of available functionality -but also in underlying
design. Such things are stop-gaps, but with the
entrenchment of HTML and DHTML, stop-gap
technology will continue to play a major role in
enabling the web application developer com-
munity.

REFERENCES
www.w3.org – World Wide Web Consortium, May

2005
www.w3.org/TR/html401 - HTML 4.01 Specification,

World Wide Web Consortium, May 2005
www.w3.org/TR/html401/present/frames.html

- Frames in HTML Documents, World Wide Web
Consortium, May 2005

www.htmlhelp.com/design/frames/usage/ - Web
Design Group, May 2005

http://www.w3.org
http://www.w3.org/TR/html401
http://www.w3.org/TR/html401/present/frames.html
http://www.htmlhelp.com/design/frames/usage/

