Bells & Whistles: Learning Programming
Principles Through Multimedia Authoring

Stephen Lowe

Aoraki Polytechnic
Timaru, New Zealand

stephenl@aoraki.ac.nz

ABSTRACT

This paper describes a study carried out
at Aoraki Polytechnic. A sub-group of students
enrolled on Certificate of Business Computing
was identified: those who were afraid of
programming.

Members of this sub-group performed
poorly on the compulsory modules PD100
(Program Development) and PP100
(Programming Principles) and subsequently
avoided programming modules wherever
possible. Students belonging to this sub-group
could be tracked right through to PJ300
(NDBC Project).

This was of grave concern to the teaching
staff because programming skills were seen
as essential to satisfactory employment in the
IT sector. Gun programmers were seen as
rare, and special aptitude was needed to gain
excellence. However, it was considered that
workaday competence was within reach of the
majority of students, given the right training.

Students belonging to the sub-group
favoured multimedia modules MA100
(Multimedia Principles) and MA200
(Multimedia Development) along with IN200
(Web Site Development) because they
perceived these to be ‘soft’ subjects dealing

in design, layout and communications. When on these
modules students encountered JavaScript and
Macromedia’s ActionScript they found it easy, and
performed satisfactorily or even well in assignment
work.

It was thought to be the non-threatening, visual
and fun environment in which to learn the principles
of programming that enabled the students.

This happy accident was developed into a system.
The multimedia studies tutor reviewed the
prescriptions and course materials for MA100, MA200
and IN200 and ensured that sufficient attention was
paid to programming structures, syntax and
development.

A system of technical storyboarding was
subsequently developed which combined structure,
logic depiction and pseudocode. This visual
storyboarding system proved to be highly effective as
a tool for planning interactivity and functionality in
multimedia production and was within the grasp of all
the students.

1. INTRODUCTION

Students who avoided programming were found
to list a common set of mythical obstacles: right-brain
thinker; no good at maths; had chosen the arts, not
the sciences; not the logical type; didn't like the geeky
image; programming was a boy thing.



Many went further than just a list of obstacles, they
expressed a fear of programming. Their fears were
founded in visions of: long solitary hours of work;
immensely thick books full of arcane texts; numbers
bigger than 100; of strange symbols; and of fruitless
hours failing to correct syntax.

This group chose every module with the one
criteria —that it didn’t involve programming.

It was necessary to make some provision for these
students, to sneak the business of programming up
on them, and later present them with a fait accompli:
‘You see, you can program’. It was thought that to
gain some mastery of programming, albeit at a
modest level, was essential to satisfactory
employment prospects in the IT sector.

In multimedia work it was found that students
became so determined to make the thing work, they
willingly persevered with logical, typographical, and
syntax errors. The tutor encouraged group effort to
solve problems, and rarely offered code verbatim.

It became apparent therefore that the tutor’s role
had shifted from technician to motivator, and it was
further noted that this was closely aligned with the
findings of Jenkins (2002) in his paper “Teaching
Programming, A Journey from Teacher to Motivator”.

2. METHOD

Working with the teaching of motivational speaker
Rakesh Pandey, whose ethos of “easy, quick, and
fun” could be used as a diagnostic tool on failing
modules, the tutor looked for methods that would
motivate the threatened sub-group of students.

The pragmatic, results-oriented, problem-solving,
team-effort aspects of multimedia production provided
precisely the vehicle the tutor needed to teach, under
cover of ‘fun’, the principles of programming. The
criteria of ‘quick’ was met, because correct code
produced immediate positive feedback, and the
criteria of ‘easy’ was met because many hands made
light work, and because the mechanical processes
of Macromedia Flash were easily accessible to even
the simplest thinkers.

To engage the student in meaningful tasks the
problems were presented in a contemporary format:
drag and drop web media; selecting colours and sizes
of product; animating avatars in multi-user
environments; hiding purchased items in a shopping
cart; and passing parameters from the checkout to a
server-side script.

The logic was diagrammed in storyboards and in
plain English with the rough visuals and beat outline;
the logic inlined with the story. The tutor searched for
an established system of logic depiction specifically
suited to multimedia, and failed to find one. The tutor’s
own system, tried and tested in the industry, was
developed into a teaching tool similar to the structured
diagrams normally associated with PP100 and PD100
(see Figure 1).

3. APPLICATION

Two scenarios were favoured by the tutor: both
were popular with students; both were current in the
modern idiom; both met the requirements set by the
need to teach a complete set of basic programming
structures.

3.1 DRAG-N-DROP PIZZA ONLINE

ORDER

The project type: Media-rich web application.
The technology: Macromedia Flash 5.

The purpose: To provide a pizza house operator
with a reliable self-ordering system for take-away
pizza buyers. To provide the pizza buyers with a
compelling, easy-to-use, reliable way of ordering.

The scope: To create a graphical drag-n-drop
interface to pizza ordering where the confirmed order
was emailed to the kitchen. Outside the scope was
bank card processing.

The plan: To create a pizza base, scalable to 8-
inch, 10-inch, or 12-inch. To create graphical
representations of various common toppings. To
make these toppings draggable to the pizza base, so
customers could create their dream pizza online.
Name-and-value pairs were passed with each
dragged-on topping to a form, city zone factors were
applied to cover delivery costs, voucher discounts
were applied, and the form, confirmed and validated,
submitted url-encoded data to a server-side cgi script
which output an email to the kitchen.

The schedule: To deliver the teaching and facilitate
the necessary group work over 32 hours in the
classroom, plus additional tutorial time, attached to
the module MA200 Multimedia Development.

The desired learning outcomes: In line with the
prescription for MA200, ‘implement the project using
appropriate technology’, it was desired that students
would become thoroughly familiar with the primary



/>I-:
*on press
*start drag

*on release

— | *stop drag

*if this hits that
*this hide
*/

Figure 1. The hierarchy of nested instances, and the scripting, is shown in this technical
storyboard of a drag and drop object

structures, objects, methods and properties of Flash
ActionScript, a language akin to JavaScript and based
on the ECMA-262 standard.

3.2 DRAG-N-DROP FASHION
BOUTIQUE

The project type: Media-rich web application.
The technology: Macromedia Flash 5.

The purpose: To provide a boutique operator with
a reliable online catalogue ordering system for
fashion label buyers. To provide apparel and
accessory buyers with an easy-to-use, fun, reliable
way of ordering.

The scope: To create a graphical drag-n-drop
interface to apparel and accessory ordering where
the confirmed order was emailed to the warehouse.
Outside the scope was bank card processing.

The plan: To create a virtual boutique with
ambience, a compelling online shopping experience.
To create graphical representations of various fashion

lines. To make these clothes and accessories
draggable to an animated mannequin (or avatar), so
customers could try various outfits. Name-and-value
pairs were passed with each combination to a form,
which, when confirmed, could submit to a server-side
cgi script which output an email to the warehouse.

The schedule: As above.

The desired learning outcomes: As above, and,
because these students worked in small disparate
groups, a secondary outcome was the discovery of
the value of working to a comprehensive specification.

3.3 PROGRAMMING ELEMENTS

A drag and drop object, representing a
purchasable item such as a portion of mushrooms,
taught: parent and child relationships; classes (library
objects in Flash), and instancing; nesting; dot syntax;
verbose and terse constructions; commenting;
targeting, and many other core programming skills.

A shopping cart taught: conditional statements;
the programmatic manipulation of properties; the



passing of parameters; and the formatting of strings
and floating point numbers.

An email order system taught: url-encoding, and
the passing of name and value pairs; interfacing with
server-side technologies other than the primary Flash
technology; and usability issues.

Creating a media-rich web application, as a group
project, also gave the student an opportunity to learn:
working to a user requirement; working to a
specification; adhering to naming conventions;
prototyping, testing and debugging procedures; and
quality assurance.

3.4 RESULTS

The students researched real-world pizza outlets
and boutiques to ascertain the user requirement. They
created storyboards which illustrated the environment,
the user (or avatar), and the user’s interaction with
the environment. Spurred on by a desire to implement
the meaningful and engaging application, they quickly
learned the necessary procedures to give the
application its back-end functionality. Students with
drawing talent worked hard to create original and
attractive front-ends. Testing was carried out with
rigour, as the pressure came on to deliver a reliable
build.

A period of post-production reflection revealed a
group that felt satisfied with their achievement, and
were keen to explore multimedia scripting to a level
of greater complexity. More important were a number
of students who now wanted to sign on mainstream
programming modules, an interest in programming
awakened.

Samples were too small to be processed into
statistical evidence, and this study was treated as
action research to be iterated each year, involving all
the stakeholders; the practice of continuous process
improvement.

4. TEACHING ISSUES

Three main issues arose: assessment, portfolios,
and learning styles. Skepticism was anticipated, and
the tutor was keen to prepare early for moderation or
observation.

4.1 ASSESSMENT

Students were required to demonstrate core
procedures in a practical test. With that assurance of
individual learning in place it was acceptable for

students to contribute only their specialist skills to the
group work. This raised the standard of the product
of that group work, and in turn raised morale and
motivation in the group.

4.2 PORTFOLIO

The tutor was concerned not only with the
students’ attainment of the qualification, but also with
the production of meaningful material for display. In
a paper by Plimmer (2000) the value of portfolios in
programming courses was emphasised, and
reflection and creativity resulted. Employers in the
media sector, the tutor noted, were more interested
in an applicant’s portfolio than in their qualification —
a good test reel, and a timely arrival on the doorstep
of a busy studio, were the surest indicators of success
for the job-seeker.

4.3 LEARNING STYLES

Meeting different learning styles was a concern
of the tutor, and it was observed that the formats
common to multimedia production also met the
requirements of the educationalist. In a multimedia
studio storylines are pitched to the team: a series of
communicative sketches are shown, accompanied
by a stagecrafted presentation. If the initial pitch is
successful, time and money are made available for
the creation of a test reel which validates the proposed
sequences. The needs of the visual learner, the kinetic
learner, and the theorist are thus met.

5. HISTORICAL ASPECTS

A thorough search of the web, using the keywords
‘teaching’, ‘programming’ and ‘multimedia’, revealed
little. However, it was observed that the turtle graphics
of LOGO and sound generation in QBasic had been
popular aids in schools for the teaching of
programming.

Teaching programming through multimedia was
found to be not new, but had declined, perhaps
because of the considerable complexity and cost of
a package like Macromedia Flash. Various freeware
packages were used to introduce students to
multimedia concepts, but none had the equivalent
sophistication of Flash ActionScript.

6. CONCLUSION

There should be equal opportunity for wannabe
computer programmers, and a choice made early in



life to follow the arts or the humanities should not
preclude anyone from having a go.

Obstacles and fears were largely unfounded, could
not be discounted, and could be overcome.

Multimedia authoring (as implemented in
Macromedia Flash 5) was a fit, comprehensive, and
appropriate vehicle for the teaching of programming
principles.

REFERENCES

Jenkins, T. (2002). “Teaching Programming, A
Journey from Teacher to Motivator”. Accessed
May 2, 2002. http://www.ics.ltsn.ac.uk/pub/
conf2001/papers/Jenkins.htm University of Leeds,
UK.

Plimmer, B. (2000). “A Case Study of Portfolio
Assessment in a Computer Programming
Course”. Proceedings of the NACCQ, Wellington,
2000, pp 279-283.

Moock, C. (2001). “ActionScript, The Definitive
Guide”. Sebastopol: O'Reilly.






