
�
����

P
ro

ce
ed

in
g

s
o

f
th

e
15

th
 A

n
n

u
al

 N
A

C
C

Q
, H

am
ilt

o
n

 N
ew

 Z
ea

la
n

d
 J

u
ly

, 2
00

2
w

w
w

.n
ac

cq
.a

c.
n

z

�	���	��	
�,2��1����	����������
E	(����	(�	
������
���������

The reason the author has decided to write this
paper is that many students, teachers and practitioners
have asked many questions:

1. What has the DFD (Data Flow Diagram) got to do
with web development?

2. How do I code my web-pages from the class
diagrams?

3. Coding objects from a relational database, what?
How does that work?

4. Shouldn’t you just use tools from one paradigm?
5. Why do many web projects get caught in the code

freeze, even before coding has begun?
6. Why are you teaching VBScript classes when the

objects are not persistent?
7. Should an n-tier based architecture be the

foundation of all web-applications?
8. Should development be driven by the look and feel

of the final application or from the database?

These questions lead to other questions and
generate many lengthy and passionate debates.
Some answers to these questions will be provided in
this paper. For clarity, the author will define the
terminology used; so that ambiguity can be avoided.

This paper draws on the usefulness of many
systems analysis tools and highlights their potential
role in web-development. In addition, the relationships
that exist amongst the tools will be described.

��1�(������(�

Media Design School
Auckland, New Zealand

davidm@mediadesign.school.nz

ABSTRACT
It is often difficult for web developers to

understand the role of systems analysis tools
in the development of web-based projects.
Sometimes there is a misunderstanding that
web-development is different. Sometimes this
means that the web-developer ignores the
tried and tested systems analysis tools of old
and uses an in-house set of tools, at best.
Often, the infinite code fix method is used.
Many tried and tested systems analysis and
design tools can be used to aid web-
development. The purpose of this paper is to
highlight the usefulness of several systems
analysis and design tools from both Object
Orientated and Structured Paradigms, within
the framework of the n-tier architecture.

Keywords: Object Orientation, Structured
Analysis, Web Development, n-Tier
Architecture

1. INTRODUCTION
The purpose of this paper is to show that

OOAD (Object Orientated Analysis & Design)
and SSAD (Structured Systems Analysis &
Design) are useful for web development, and
can be used in unison for speedy web-
development.

���

The n-tier model will be described and the
usefulness of each systems analysis and design tool
will be identified.

1.1 THESIS AND ANITHESIS: THE
SYNTHESIS

The thesis of this paper is: web development
practice can be made simpler, easy to manage,
through greater clarity and understanding of the role
of the analysis and design tools in analysis, design
and development. Using tools from both paradigms
(OO and Structured). The role and relationship of
the tools within the n-tier architecture provides the
framework to express the thesis.

The antithesis of this paper is: mixing paradigms
is inappropriate, deviates from standard practice,
deviates from doctrine. Does the n-tier model provide
an appropriate framework for discussion.

The synthesis of this paper is: development and
analysis are real tasks of the web-developer; if
anything this can make development easier and
simpler, then it must be good. General opinion of
most web-developers is that the n-tier model of web-
development is the best model; albeit that it is not
used much in industry; however, an n-tier model is
downward compatible to its three and two tier cousins;
upwards compatibility is not possible; that is why that
framework was selected.

1.2 OBJECT ORIENTATED ANALYSIS
AND DESIGN

Classes are the key to any Object Orientation
Development. Although other models do make the
development of projects using OO. Object Orientation
has the benefits of greater code reuse, greater
scalability, and greater maintainability; if it is measured
against its procedural or functional counterpart. The
class diagram is very useful for web-development
especially if developed hand-in hand with the ERD
(Entity Relationship Diagram). Developing both the
ERD and Class Diagram hand-in-hand, can make
web-development easy.

1.3 STRUCTURE SYSTEMS ANALYSIS
AND DESIGN

The corner stone of many transactional-based
web-applications is the database behind the scenes.
These databases are predominantly relational
databases. The Entity Relationship Diagram is useful

for the design of the database. Dataflow diagrams
are being used less and less in industry; however,
the usefulness of the DFD will be transparent later.

1.4 TIERED ARCHITECTURES
Often web development projects are developed

using tiered systems. The typical web-developer has
used two-tier architecture. This is a client/server-
based architecture in which only the client and server
are involved in the transactions over the Internet. This
usually manifests itself as Web Server to HTML
Pages. The three-tier model extends this model by
adding applications and their associated databases
to the model, these will usually supply none mark-up
language information to the Web-Server on request.
In the n-tier model, more separation is made:
Database Layer, Data Access Layer, Business Logic
Layer, Presentation Logic Layer, and Presentation
Layer. This interpretation of the n-tier model is what
this paper refers to as the n-tier model.

1.5 DATABASE LAYER, SIMPLY IS THE
DATABASE SCHEMA AND STORED
PROCEDURES (IF ANY)

Data Access layer, is simply the connections to
the database and execution orders of the database
commands or stored procedures.

Business logic layer, is the abstraction of these
database objects, connections and execution orders
into business units, for example the customer object
is composed of its properties and methods that have
a layer of abstraction over the data.

Presentation logic layer, is the production of what
will be displayed on the screen for the user to interact
with the system. The presentation logic is the what
not how of presentation.

Presentation layer, finally, the presentation layer
involves the how of presentation: graphics, graphic
art work, sound, etc.

The problem with some web-development projects
is that the web-designer (with minimal education is
database design and computing) does some of those
tasks: this can result in a poor quality system
functionally. On the other hand, the web-developer
(with little or no creative flair or graphic art knowledge)
does some of those tasks: this can also result in a
low grade graphical front-end system.

1.6 TEMPORAL PARADIGM
It is often said that one should select a paradigm

and do everything in that paradigm. That is often

���

correct and it is sometimes correct in web-
development. Most transactional-based web
applications use a relational database and the data-
access tier often uses procedural or functional based
coding; however, when the data-access layer is
written using OO technology when com-objects are
used or the development technology is Java. Mixing
these paradigms, as is often the case in the web-
development environment, means that the tools of
either paradigm in isolation do not provide enough
information to aid the developer.

Most web-development projects use a relational
database as the backend data-store; the tool of choice
for most relational database designers and
developers is the Entity Model.

2. SYSTEMS DEVELOPMENT
LIFECYCLE

2.1 EVOLUTIONARY PROTOTYPING
Many systems development lifecycles exist and

many have been applied to web-development. One
common approach in industry is to use evolutionary
prototyping. Evolutionary delivery has many pitfalls
in web-development, McConnell Describes these as:
unrealistic schedule and budget expectations;
inefficient use of prototyping time, unrealistic
performance expectations, poor design and poor
maintainability. However, the evolutionary prototyping
has some major benefits, that is: greater progress
visibility from greater customer and user feedback.
Evolutionary prototyping is fraught with danger, other
SDLC tools can be used to reduce this risk.
Evolutionary Prototyping was the preferred SDLC of
1/18 junior developers studied.

One way of improving the Evolutionary Prototyping
model is to use the Evolutionary Delivery lifecycle
using a throwaway prototype. Many problems exist
when web-development is driven using evolutionary
prototyping. The prototype can eventually become
the final product; this often leads to a software solution
with much feature creep, lacks maintainability, and is
not extensible. Integrating an evolved prototype into
an n-tier model is inefficient in a number of different
ways. This causes numerous overly complex
problems for the web-developer.

It is often thought that prototyping leads to a quality
solution; in some cases this is correct. Its highlighted
by McConnell (1996), that prototyping does not
guarantee high-quality end-user or customer
feedback. End users and customers don’t always

know what they are looking at when they are
presented with a prototype. Customers and users
can become so overwhelmed by the live software
demonstration that they do not look beyond the glitz
and glamour to understand the material that is
presented to them. It is no wonder that many web-
development projects deliver the wrong solution.

The product developed using the evolving
prototyping model suffers from a number of problems:

1. No consideration given to the performance in the
product design;

2. Keeping poorly structured code that was
developed quickly for the prototype;

3. Keeping inefficient code that was developed
quickly for he prototype; and

4. Keeping a prototype that was developed as a
throwaway.

Actions can be taken that remove these problems.
The greatest solution is to use Evolutionary
Prototyping with other systems development
lifecycles, like Evolutionary Delivery or Staged
Delivery.

2.2 STAGED DELIVERY
Staged Delivery involves the development of a

project in stages. A good example of this would be a
typical database driven website, that requires content,
navigation and form to be derived from a database.
For both users and administrators of the websites.
In staged delivery the administration of the site would
be implemented first and presented to the users that
would fall into that category. The ‘web’ browsing
portion for standard users would be developed in the
second instance. Many sub-systems can exist in
web-projects, these for smaller sub-projects. The
problems recognised in this lifecycle model is feature
creep. Many benefits exist for developing web-
projects using the staged delivery model. It was the
preferred SDLC method for 16/18 junior web-
developers in 2001.

2.3 EVOLUTIONARY DELIVERY
Evolutionary Delivery is a variation of the

Evolutionary Prototyping and Staged Delivery as
described above. The product is developed in
versions; the user is presented with the current
version, feedback is acquired, the feedback is used
to further develop the project and the cycle continues
until the customer is happy. McConnell describes

���

several pitfalls of Evolutionary Delivery: it promotes
feature creep, project control diminishes, inefficient
use of developers time, and promotes unrealistic
schedule and budget expectations.

2.4 CODE-AND-FIX
Often, the preferred web-development strategy is

the infinite Code-and-Fix lifecycle. This was the
preferred SDLC of 1/18 junior developers studied.
Described by McConnell: is seldom useful. The fact
is, however, that many web-developers use the code-
fix SDLC. Code-and-fix can be used to good effect
in a small way, that is for developing throwaway
prototypes. Code-and-fix has no overhead, time is
not expended in planning, documentation and quality
assurance. This is excellent for throwaway prototypes
or proof-of-concept projects.

3. PROPOSED SDLC
The proposed SDLC for web-development requires

explanation from several alternative perspectives.

The proposed SDLC for web-development is the
staged delivery model as described earlier in this paper,
with some slight alteration.

The systems analysis artefacts produced at each stage
are:

♦ Software Concept [Project Terms of Reference,
Interviews]

♦ Requirements Analysis [Entity Relationship Model,
Use-Case Model (users)]

♦ Architectural Design [Class Diagrams]
♦ Stage 1: Detailed Design, develop, debug, code, test

and deliver
♦ Stage 2: Detailed Design, develop, debug, code, test

and deliver
♦ Stage 3: Detailed Design, develop, debug, code, test

and deliver
♦ [Class Diagram, ERD, Use-Case Model (users), Use-

Case Model (developers)]

The systems analysis artefacts are related to and drive
the development in the following tiers of the n-tier
architecture described in this paper:

Presentation: None (assumed to require
graphic artist)

Presentation Logic: Site Map Use-Case
Model (user driven)

Business Logic: Class Diagram

Data Access: Class Diagram
Data Base Layer Use-Case Model
(Stored Procedures): (developer driven)
Data Base Layer Entity Relationship Model
(Schema)

There are many benefits developing the systems from
the reverse direction:

1. Database Layer (Schema/Stored Procedures)
2. Data Access
3. Business Logic
4. Presentation Logic
5. Presentation.

Those benefits include:

1. Strong functional flexibility (for users, if requirements
alter)

2. Good data storage and retrieval flexibility
3. Excellent code reuse
4. Excellent maintainability
5. Good extensibility.

4. CONCLUSION
Object Orientated Systems Analysis and Design is a

useful tool for web development, however, Structured
Systems Analysis and Design tools can be used to
compliment and add clarity. The Staged Delivery coupled
with throwaway prototypes are useful. The n-tier
development architecture leads to greater code reuse and
greater control over the web-development project.

REFERENCES
Chobe, P. (1998). Web Based Development Using N-tier

Technologies. Procedings of the 4th AIS Conference,
Baltimore: MY, August 14-16, 1998.

Clark, S. et al (1999). VBScript Programmers Reference.
Wrox: Birmingham.

McConnell, S. (1996). Rapid Development. Microsoft
Press: Washington.

Philip, G. (1999). Software Design Issues in Web-based
Development. Procedings of the 5th AIS (AMCIS)
Conference, Milwaukee: WI, August 13-15, 1999.

Schneider G. & Perry, J. (2000). Electronic Commerce.
Course-Technology: Cambridge.

Sutherland, J. (2002). The Object Technology
Architecture:Business Objects for Corporate
Information Systems. Website: URL: http://
jeffsutherland.com/papers/boa_pap.html Accessed
May 2002

Trilogy Development: Website: N-Tier Architecture URL:
http://www.trilogycomputing.com/ntier.htm Accessed
May 2002.

