
12

13Proceedings of the NACCQ
Napier New Zealand July 2001
www.naccq.ac.nz

control device (joystick, keypad, blow-straw etc) and
converts it to text strings (Figure 1). While this may
have many uses, the intended initial use is in assistive
technologies for people with physical disabilities who
cannot operate a standard keyboard. This includes
those with severe disabilities and localised damage
such as OOS.

Current assistive technology systems are extremely
expensive or custom made. Neither are user
programmable meaning that for each new user or
input device a new program has to be written. The
ACKI overcomes these problems. Advantages of the
system include:

• Platform independence: will work on any computer
system

• Transportable: no software is required on the client
computer, the ultimate ‘plug and play’

• Easily programmable: a simple setup wizard as-
signs text strings to positions of the input devices.
The microprocessor embedded in the ACKI is
non-volatile meaning it maintains its settings until
it is re-assigned. This wizard operates through
the same keyboard cable so no extra set up is

ABSTRACT
This paper describes the background and
technical development of an Adaptive
Computer Keyboard Interface (ACKI). This
is a microprocessor device that allows the
generation of text information from simple
control devices (e.g. the formulation and
manipulation of text by movement of joystick).
The system is shown to be successful. This
paper also describes project plans to further
develop the ACKI to the level where it may
be considered a commercial product. This
will include a second prototype that has more
programmable variables and research into
usability and human computer interaction.

1. INTRODUCTION
This paper describes the development
and testing of a prototype device that has
considerable potential for research and
commercial development. This device is the
Adaptive Computer Keyboard Interface. In
short, this device sits between the keyboard and
computer, takes information from almost any

Development and Testing of an
Adaptive Computer Keyboard Inter-

face

Kevin Barclay, Dr Samuel Mann,
Peter Brook & Dr Andy Doonan

School of Information Technology & Electrotech-
nology

Otago Polytechnic
Dunedin, New Zealand
smann@tekotago.ac.nz

14

required
• Input device independence: Any analogue control

device can be plugged into the ACKI and positions
assigned to text strings.

2. DEVELOPMENT
3.1 Technical Development
The ACKI project has several aims, however at its
core is an issue about using a microcontroller to
emulate the functionality of a keyboard.

It is interesting that the keyboard-pc link has been one
of the most stable constants in modern computing
hardware. As computer users, we press keys on the
keyboard and single characters magically appear
on the screen. However, when one steps back
from it and views the process objectively, it seems
remarkably clumsy.

Aside from being clumsy, another interesting thing
about keyboards is that they are essentially platform

Figure 1:
ACKI sits between the keyboard and computer and accepts input from almost any other device
from joysticks and dials to air-pressure pads. It can be very simply programmed to send text

strings to the computer.

15

independent – it doesn’t matter whether they are
connected to a system which is running DOS,
Windows 3.X, Windows 9X, OS2 or LINUX etc. The
translation of thumps on the keys to characters on the
screen is thoroughly standardised and encapsulated
in the machine hardware (BIOS).

By programming a microcontroller to behave like a
keyboard and giving it access to the keyboard port
on a computer essentially abstracts the keyboard
interface back to a programming interface where we
can create enhanced functionality, but importantly
also have this as a (Operating System) platform
independent device.

The Adaptive Computer Keyboard Interface (ACKI)

project is a research and development project
whose major aims are to:

1: Implement a microcontroller based keyboard
interface.

2: Add some enhanced functionality to the unit so

that external device states can be used to choose,
and trigger, the sending of ‘character data’ from
the ACKI unit to the computer.

3: Allow for flexibility, variation and choice of the
‘external devices’.

4: Make the device programmable by the user so that
‘character data’ sent by the unit to the computer
can be easily modified.

5: Make the user-defined ‘character data’ non-vola-
tile.

6: Allow a traditional keyboard to work in conjunction
with the ACKI.

Having decided upon the major system requirements,
the ACKI project quickly decomposed into four main
development areas:
1: Device analog interface.
2: Serial driver interface into the keyboard I/O

lines.
3: Digital storage solution for non-volatile character

data in the ACKI unit.
4: Programming interface to change character data

Figure 2:
The system was developed on ATMEL microprocessors using AVR studio.

16

stored in the ACKI.

3. DEVICE ANALOG INTERFACE
The intention of the ACKI development is to be
able to cater for almost any device, however, some
assumptions are required:

• The ACKI unit would have two external devices
connected to it at any time, and these would
be used together to choose which of the stored
strings of character data would be sent to the PC,
and also trigger that sending process.

• The ACKI unit had to cater for storage of ap-
proximately 64 different strings of character data,
each string a maximum of about 200 characters.
It followed then that each of the external devices
would need to be able to represent eight different
states, so that between the two devices 64 unique
inputs could be generated to select the required
character data to be sent to the PC.

It was decided to proceed using two different types
of external devices for the prototype. One type
would be a conventional joystick where the eight
points of the compass would be used, and the other
would be an array of eight push buttons. However,
any combination of the input devices would need
to work together with only minor (or preferably no)
intervention by the user.

Pure analog inputs from the joysticks are converted
with an analog to digital converter (ADC) to quantify
measurements and evaluate the physical position
of the joystick. This also allowed frugality with a
limited number of I/O pins on the microcontroller.
Even though the push buttons could have been read
directly on microcontroller port lines, a hardware
interface was created that used ADCs for both
the joystick and push button inputs. This utilized
a Texas Instruments chip (TLC542) which had
several advantages, but primarily it allowed a six
wire interface to the hardware, that had the capacity
to sample from the worst case scenario which was
both external devices being push buttons i.e. a total
of 16 inputs to deal with.

Each ADC chip had the capacity to sample from 11
different input channels, and a separate chip was
used for each of the four possible device interfaces,
even though only two device interfaces would be

used at any given time. The three ADC control lines
were placed on a common bus, and each ADC chip
was uniquely controlled by its own Chip Select line
(CS). This was all done under control of code running
in the microcontroller.

Several versions of the device analog interface were
built as tests were made, and the design and program
progressed.

Figure 3 shows the second version, which was a
full implementation of the device interface. It was
set up for four ADCs, and was tested fully with both
joystick and press button inputs. Complete sample
time for a Joystick (2 channels) is 423 microseconds
and for a press button device (8 channels) is 1200
microseconds. So the worst-case scenario is 2
press button devices, total sample time being 2435
microseconds. This equates to over 400 complete
samples occurring every second.

4. SERIAL DRIVER FOR KEY-
BOARD

The core functionality of the ACKI project is to be able
to connect into the IO lines between a keyboard and
the computer, and drive information into them so that
it looks like a keyboard is sending data.

The physical interface between the keyboard and
computer is a relatively simple interface and well
defined. This is not the case for the data that actually

Figure 3:
The Analog-Digital Interface

17

propagates along the keyboard IO lines. Different
sources gave a (slightly) different story about the
operation and format of keyboard data, a favourite
quote from a Keyboard FAQ where an author said
that:
 “ getting the AT keyboard to work in my first project

was a gut-wrenching, hair-pulling experience.”

4.1 The Keyboard Protocols
The first task is simply trying to intercept and read
the serial data moving between a keyboard and
PC. There are two serial lines of interest: clock and
data.

The protocol between the keyboard and PC is an
awkward one, because it is bi-directional. Each
device can send information to the other, but the
keyboard always runs the clock. So if the PC wants
to send messages to the keyboard, it must first signal
to the keyboard to start running the clock, and then
it manipulates the data line so that it will be read on
the falling edges of the clock cycle. If the keyboard
needs to send data to the host, it simply checks the
status of the data and clock lines, and if all is normal
will start running the clock and manipulating the
data line.

The data is in an 11 bit format, which consists of 1
Start, 8 Data, 1 (Odd) Parity, 1 Stop bit. This was a
first major difficulty: as the keyboard data and clock
lines were monitored, the data could be reliably
identified. Eventually it was discovered that although
the keyboard makes 11 clock cycles to clock in 11 bits
of data, - as an acknowledgement the PC will pull the
clock line low briefly, to show the successful receipt of
a character and prevent the keyboard from sending
any further data. Thus, there are actually 12 clock
cycles, as opposed to 11. The AVR in-built UART
was used to talk to a terminal program on a PC via
an RS232 serial link, so whenever a key was pushed
on the keyboard, the microcontroller would intercept
and clock in the data internally and then send it out
via the serial link to allow an ASCII representation of
the data being displayed on the terminal program.

The codes being sent between the keyboard and
PC (referred to as Scan Codes) really represent an
(almost) arbitrary mapping of the keys on a keyboard.
They have no correspondence to ASCII or any other

psuedo-standard. Apparently, when IBM created the
original keyboard specification, they wanted the scan-
codes that represent individual key-presses to be as
‘flexible’ as possible, to cope with different character
sets used in different countries, -so effectively any
key press can be interpreted as any character.

Whenever you push and release an ordinary key,
there are actually three scan codes generated. This
is because the key-release sequence includes a
generic key release code ($F0) and a repetition of
the original scan code.

For example, on a standard AT keyboard, the scan
code for a ‘z’ is hex $1A.
 Keyboard Action: ScanCode
1. Keypress <z> Scan Code sent: $1A
2. KeyRelease <z> BreakCode sent $F0
3. Scan Code resent $1A

The code that a key press generates is the same
regardless of whether it is a <shifted> character or
not. The difference between a shifted and unshifted
character is only that, when you press the shift key, a
scan code is sent to the PC which tells it to interpret
the following scan codes in its <shifted> state:
 Keyboard Action:
ScanCode
1. Keypress (left) <shift> Scan Code sent: $12
2. Keypress <z> Scan Code sent $1A
3. KeyRelease <z> Break Code sent $F0
4. Scan Code resent $1A
5. Keyrelease (left)
 <shift> Break Code sent $F0
6. Scan Code resent $12

The final complication to this scenario is that some
keys generate an extended set of scan codes. This
can be seen for keys like <Alt>, <PrintScreen> and
the <Windows Key>.

A number of codes exist that the PC can send to the
keyboard. These are for changing various keyboard
parameters, resetting the keyboard and performing
other maintenance functions. Interestingly, the

18

LEDS on a keyboard (Num Lock, Caps Lock etc) are
controlled by these commands, and are not directly
switched from the keys on the keyboard.

After many hours of testing, a number of things
became apparent. The most important of these was
that having been able to read the keyboard data
(albeit in a crude un-decoded state) there was some
confidence that keyboard data could be simulated
by taking control of the clock and data lines. This
also meant isolating the actual keyboard during that
time so as not to become confused by any signals
generated on the clock and data lines.

4.2 Hardware Interface
The hardware interface for the serial driver had to
accomplish two major functions: Be able to drive the
clock and data lines under control of the AVR, and
be able to isolate the keyboard.

The data and clock lines are both normally held high
(+5v) by pull-ups at both the keyboard and PC. This
enabled two transistors to pull the lines to ground and
generate the clock and data pulses. The isolation of
the keyboard was more difficult as the lines (data and
clock) essentially had to be treated as bi-directional
lines. A pure analog device was used to do the
switching - a bi-lateral transmission gate.

The final version of the keyboard interface contains
transmission gates for keyboard isolation, transistors
for driving the clock and data lines and an extra
package of inverting buffers to provide some
electrical isolation and also flip the control signal to
the transistors (because of an inverting function which
occurred as a result of the mode they were used in).
The finished product looks remarkably uncomplicated,
but is effective, simple and implements a reasonably
elegant solution to the problem.

4.3 Software
As well as the hardware interface, a huge effort was
spent implementing code to actually control and
drive into the unit. Essentially, the basic keyboard
protocol had to be emulated and welded together
with the hardware. A thorough understanding of the
protocol, and plenty of preliminary testing was the

key to coming up with a good solution here.

Because the ACKI unit will store strings of text in
ASCII representation, a conversion routine was
needed to change ASCII codes into numerical codes.
This table was implemented at no expense to code
space, by placing the table into the ESEG (EEPROM
segment) of the AVR memory architecture. The
code handles shifted and unshifted alphanumeric
characters, as well as a relatively complete set of
punctuation. Support for more characters is available
by a simple modification to the lookup table.

5. STORAGE SOLUTION
Because of the requirement for the ACKI to be
an independent and transportable device, it was
necessary to be able to store 16kb of text data in
non-volatile memory so that it could be transmitted
at any time. ATMEL FLASH memory was chosen for
this task (Figure4).

The ATMEL microprocessor used is able to control
64kB of external memory (16 bit address) and so was
able to map both SRAM and FLASH devices directly
into the processors address space. The SRAM is
used as a high-speed buffer during download of
changed text information by the user.

By implementing the SRAM buffer, any download
errors that occur can be detected and programming of
the FLASH aborted. The buffer is also used because

Figure 4: Finished Storage/Microprocessor Board.
(Some ICs are not inserted)

19

writing to the FLASH device is moderately time
consuming - it is loaded in 64 byte sectors and the
programming operation then requires about 10mS.
So, without implementing some flow control on the
serial programming link, this hardware buffer offers
a good solution.

6. SOFTWARE
Although the ACKI is intended as a transportable
device, requiring no software on the client computer,
some software is needed to configure the device
for an individual user. An application was written in
Delphi that allows the association of inputs to ASCII
text strings (Figure 5). The ASCII characters (up to
255 for each of the 64 positions) can be written and
sent to the ACKI in a few minutes. This is also sent
to a configuration file for easy editing.

7. INTEGRATION
With all the component prototypes functioning, an
integrated design was developed and constructed
(Figures 6 and 7).

Figure 6 shows the analog interfaces on the top
board microcontroller/storage systems on the lower
board. The keyboard/PC is connected at the top right,
keypad and joysticks on the top left. The RS232 link
is connected midway on the right hand side.

8. TESTING
8.1 Performance
The ACKI device performs as expected. Instead of
keys, a series of external controls from ACKI can
be used to feed the computer with data. Currently

Figure 5:
Typical ASCII strings that the user sets

20

Figure 6:
The completed circuit boards

Figure 7:
The full prototype

21

these controls consist of combinations of joysticks
and pushbutton pads, either of which selects from
eight options, giving a total of 64 possible strings
from which to select.

The ACKI unit was designed to store approximately
64 different strings of character data where each
string contains a maximum of 200 characters. The
system was also designed to be a transportable and
independent device, where data could be transmitted
at any time, so it was necessary to be able to store
16kb of text data in non-volatile memory. This
means that the predetermined strings can be ready
programmed and stored permanently within the ACKI
device. Users may then select from eight pages of

eight text strings using a combination of two input
devices (Figure 8).

9. FURTHER RESEARCH
9.1 Human Computer Interaction
The prototype can now be used for user testing. This
will include user and task modelling techniques, along
with keystroke modelling and GOMS testing.
Preece et al. (1994) described four components,
which make up the usability requirements of a
system. Learnability, throughput, flexibility and
attitude make up these guidelines.
The GOMS method is also a useful construct. The
Goals describe the user’s goals (the tasks he or she
wants to achieve). For example, the user wishes to

Figure 8:
One line is selected from eight pages of eight lines of text

22

notify a caregiver of a need by selecting a specific
line of text by using the ACKI device. Operators are
the basic physical actions that a user must perform
in order to use the system. In the case of the ACKI,
the user could move the joystick, press a button on
the keypad, or press the joystick trigger. Methods
involve a goal being split into smaller tasks, and
there may be more than one method of doing so.
Using different input devices with which to select
ACKI text represented alternative possible methods.
For example, to select a text page and then a line of
pre-programmed text from the existing ACKI system,
a combination of input devices would be used. This
describes which method (described above) it is that a
user chooses to use. The user can decide to use any
two devices from the range of joysticks and keypads.
Potential users may be unaware of the alternatives,
but these options would be addressed within user
documentation and training.

9.2 Second Prototype
A goal of ongoing research is to further develop the
system with a second functional prototype suitable
for continuing research and commercial application.
The first prototype has a limited range of keystrokes
available: namely the alphanumeric characters.
To allow a full range of input, keystrokes such as
backspace and return should be added. To allow
capitals, a shift register is needed, perhaps operating
like the keyboard caps key.

A second prototype should also parameterise
some of the control structures of the device. One
limitation of the first prototype is the inability to vary
the sequence and timing of positions that results in a
‘keystroke’. This could be brought out as a variable,
to be programmed from the PC.

9.3 Commercialisation
This project plans to further develop the ACKI to
the level where it may be considered a commercial
product. Further work will involve an assessment of
commercial viability and a business plan. This will

also involve consideration of intellectual property
and commercial partners. There is also potential
for development in other application areas. A
simple, transportable device that can act as an
interface between sensors and PCs may have many
applications beyond keyboard emulation.

ACKNOWLEDGEMENTS
The continued development of this project is being
funded by the Otago Polytechnic’s Research and
Development Committee. Diana Kassabova, Bruce
Fergus and Matthew Dooher are working on this
project. John Brennan and Peter Church assisted
in HCI testing.

REFERENCES
Preece, J., Rogers, Y., Sharp, H., Benyon, D.,

Holland, S., Carey, T. (1994). Human-computer
interaction. Sydney: Addison-Wesley.

