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control device (joystick, keypad, blow-straw etc) and 
converts it to text strings (Figure 1).  While this may 
have many uses, the intended initial use is in assistive 
technologies for people with physical disabilities who 
cannot operate a standard keyboard.  This includes 
those with severe disabilities and localised damage 
such as OOS.

Current assistive technology systems are extremely 
expensive or custom made.  Neither are user 
programmable meaning that for each new user or 
input device a new program has to be written.  The 
ACKI overcomes these problems.  Advantages of the 
system include:

• Platform independence: will work on any computer 
system

• Transportable: no software is required on the client 
computer, the ultimate ‘plug and play’

• Easily programmable: a simple setup wizard as-
signs text strings to positions of the input devices.  
The microprocessor embedded in the ACKI is 
non-volatile meaning it maintains its settings until 
it is re-assigned.  This wizard operates through 
the same keyboard cable so no extra set up is 

ABSTRACT
This paper describes the background and 
technical development of an Adaptive 
Computer Keyboard Interface (ACKI).  This 
is a microprocessor device that allows the 
generation of text information from simple 
control devices (e.g. the formulation and 
manipulation of text by movement of joystick).  
The system is shown to be successful.  This 
paper also describes project plans to further 
develop the ACKI to the level where it may 
be considered a commercial product.  This 
will include a second prototype that has more 
programmable variables and research into 
usability and human computer interaction.  

1. INTRODUCTION
This paper describes the development 
and testing of a prototype device that has 
considerable potential for research and 
commercial development.  This device is the 
Adaptive Computer Keyboard Interface.  In 
short, this device sits between the keyboard and 
computer, takes information from almost any 
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required
• Input device independence: Any analogue control 

device can be plugged into the ACKI and positions 
assigned to text strings.

2. DEVELOPMENT 
3.1 Technical Development
The ACKI project has several aims, however at its 
core is an issue about using a microcontroller to 
emulate the functionality of a keyboard. 

It is interesting that the keyboard-pc link has been one 
of the most stable constants in modern computing 
hardware.  As computer users, we press keys on the 
keyboard and single characters magically appear 
on the screen.  However, when one steps back 
from it and views the process objectively,  it seems 
remarkably clumsy. 

Aside from being clumsy, another interesting thing 
about keyboards is that they are essentially platform 

Figure 1: 
ACKI sits between the keyboard and computer and accepts input from almost any other device 
from joysticks and dials to air-pressure pads.  It can be very simply programmed to send text 

strings to the computer.
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independent – it doesn’t matter whether they are 
connected to a system which is running DOS, 
Windows 3.X, Windows 9X, OS2 or LINUX etc.  The 
translation of thumps on the keys to characters on the 
screen is thoroughly standardised and encapsulated 
in the machine hardware (BIOS).

By programming a microcontroller to behave like a 
keyboard and giving it access to the keyboard port 
on a computer essentially abstracts the keyboard 
interface back to a programming interface where we 
can create enhanced functionality, but importantly 
also have this as a (Operating System) platform 
independent device. 
 
The Adaptive Computer Keyboard Interface (ACKI) 

project is a research and development project 
whose major aims are to: 

1: Implement a microcontroller based keyboard 
interface.

2: Add some enhanced functionality to the unit so 

that external device states can be used to choose, 
and trigger, the sending of ‘character data’ from 
the ACKI unit to the computer. 

3: Allow for flexibility, variation and choice of the 
‘external devices’. 

4: Make the device programmable by the user so that 
‘character data’ sent by the unit to the computer 
can be easily modified.

5: Make the user-defined ‘character data’ non-vola-
tile.

6: Allow a traditional keyboard to work in conjunction 
with the ACKI.

Having decided upon the major system requirements, 
the ACKI project quickly decomposed into four main 
development areas: 
1: Device analog interface.
2: Serial driver interface into the keyboard I/O 

lines.
3: Digital storage solution for non-volatile character 

data in the ACKI unit.
4: Programming interface to change character data 

Figure 2:
The system was developed on ATMEL microprocessors using AVR studio.
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stored in the ACKI.

3. DEVICE ANALOG INTERFACE 
The intention of the ACKI development is to be 
able to cater for almost any device, however, some 
assumptions are required:  

• The ACKI unit would have two external devices 
connected to it at any time, and these would 
be used together to choose which of the stored 
strings of character data would be sent to the PC, 
and also trigger that sending process. 

• The ACKI unit had to cater for storage of ap-
proximately 64 different strings of character data, 
each string a maximum of about 200 characters.  
It followed then that each of the external devices 
would need to be able to represent eight different 
states, so that between the two devices 64 unique 
inputs could be generated to select the required 
character data to be sent to the PC. 

It was decided to proceed using two different types 
of external devices for the prototype.  One type 
would be a conventional joystick where the eight 
points of the compass would be used, and the other 
would be an array of eight push buttons.  However, 
any combination of the input devices would need 
to work together with only minor (or preferably no) 
intervention by the user.
 
Pure analog inputs from the joysticks are converted 
with an analog to digital converter (ADC) to quantify 
measurements and evaluate the physical position 
of the joystick.  This also allowed frugality with a 
limited number of I/O pins on the microcontroller.  
Even though the push buttons could have been read 
directly on microcontroller port lines, a hardware 
interface was created that used ADCs for both 
the joystick and push button inputs.  This utilized 
a Texas Instruments chip (TLC542) which had 
several advantages, but primarily it allowed a six 
wire interface to the hardware, that had the capacity 
to sample from the worst case scenario which was 
both external devices being push buttons i.e. a total 
of 16 inputs to deal with. 

Each ADC chip had the capacity to sample from 11 
different input channels, and a separate chip was 
used for each of the four possible device interfaces, 
even though only two device interfaces would be 

used at any given time.  The three ADC control lines 
were placed on a common bus, and each ADC chip 
was uniquely controlled by its own Chip Select line 
(CS).  This was all done under control of code running 
in the microcontroller. 

Several versions of the device analog interface were 
built as tests were made, and the design and program 
progressed. 

Figure 3 shows the second version, which was a 
full implementation of the device interface. It was 
set up for four ADCs, and was tested fully with both 
joystick and press button inputs.  Complete sample 
time for a Joystick (2 channels) is 423 microseconds 
and for a press button device (8 channels) is 1200 
microseconds. So the worst-case scenario is 2 
press button devices, total sample time being 2435 
microseconds. This equates to over 400 complete 
samples occurring every second. 

4. SERIAL DRIVER FOR KEY-
BOARD 

The core functionality of the ACKI project is to be able 
to connect into the IO lines between a keyboard and 
the computer, and drive information into them so that 
it looks like a keyboard is sending data. 

The physical interface between the keyboard and 
computer is a relatively simple interface and well 
defined.  This is not the case for the data that actually 

Figure 3:
The Analog-Digital Interface



17

propagates along the keyboard IO lines.  Different 
sources gave a (slightly) different story about the 
operation and format of keyboard data, a favourite 
quote from a Keyboard FAQ where an author said 
that: 
 “ getting the AT keyboard to work in my first project 

was a gut-wrenching, hair-pulling experience.” 

4.1 The Keyboard Protocols 
The first task is simply trying to intercept and read 
the serial data moving between a keyboard and 
PC.  There are two serial lines of interest: clock and 
data. 

The protocol between the keyboard and PC is an 
awkward one, because it is bi-directional.  Each 
device can send information to the other, but the 
keyboard always runs the clock.  So if the PC wants 
to send messages to the keyboard, it must first signal 
to the keyboard to start running the clock, and then 
it manipulates the data line so that it will be read on 
the falling edges of the clock cycle.  If the keyboard 
needs to send data to the host, it simply checks the 
status of the data and clock lines, and if all is normal 
will start running the clock and manipulating the 
data line. 

The data is in an 11 bit format, which consists of 1 
Start, 8 Data, 1 (Odd) Parity, 1 Stop bit.  This was a 
first major difficulty: as the keyboard data and clock 
lines were monitored, the data could be reliably 
identified.  Eventually it was discovered that although 
the keyboard makes 11 clock cycles to clock in 11 bits 
of data, - as an acknowledgement the PC will pull the 
clock line low briefly, to show the successful receipt of 
a character and prevent the keyboard from sending 
any further data. Thus, there are actually 12 clock 
cycles, as opposed to 11.  The AVR in-built UART 
was used to talk to a terminal program on a PC via 
an RS232 serial link, so whenever a key was pushed 
on the keyboard, the microcontroller would intercept 
and clock in the data internally and then send it out 
via the serial link to allow an ASCII representation of 
the data being displayed on the terminal program. 

The codes being sent between the keyboard and 
PC (referred to as Scan Codes) really represent an 
(almost) arbitrary mapping of the keys on a keyboard.  
They have no correspondence to ASCII or any other 

psuedo-standard.  Apparently, when IBM created the 
original keyboard specification, they wanted the scan-
codes that represent individual key-presses to be as 
‘flexible’ as possible, to cope with different character 
sets used in different countries, -so effectively any 
key press can be interpreted as any character. 

Whenever you push and release an ordinary key, 
there are actually three scan codes generated. This 
is because the key-release sequence includes a 
generic key release code ($F0) and a repetition of 
the original scan code. 

For example, on a standard AT keyboard, the scan 
code for a ‘z’ is hex $1A. 
  Keyboard Action: ScanCode
1. Keypress <z> Scan Code sent:  $1A
2. KeyRelease <z> BreakCode sent   $F0
3.       Scan Code resent  $1A

The code that a key press generates is the same 
regardless of whether it is a <shifted> character or 
not. The difference between a shifted and unshifted 
character is only that, when you press the shift key, a 
scan code is sent to the PC which tells it to interpret 
the following scan codes in its <shifted> state:   
  Keyboard Action:  
ScanCode
1. Keypress (left) <shift> Scan Code sent:  $12
2. Keypress <z> Scan Code sent   $1A
3. KeyRelease <z>  Break Code sent  $F0
4.   Scan Code resent $1A
5. Keyrelease (left) 
 <shift> Break Code sent   $F0
6.  Scan Code resent  $12

The final complication to this scenario is that some 
keys generate an extended set of scan codes. This 
can be seen for keys like <Alt>, <PrintScreen> and 
the <Windows Key>. 

A number of codes exist that the PC can send to the 
keyboard. These are for changing various keyboard 
parameters, resetting the keyboard and performing 
other maintenance functions.  Interestingly, the 
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LEDS on a keyboard (Num Lock, Caps Lock etc) are 
controlled by these commands, and are not directly 
switched from the keys on the keyboard. 

After many hours of testing, a number of things 
became apparent.  The most important of these was 
that having been able to read the keyboard data 
(albeit in a crude un-decoded state) there was some 
confidence that keyboard data could be simulated 
by taking control of the clock and data lines.  This 
also meant isolating the actual keyboard during that 
time so as not to become confused by any signals 
generated on the clock and data lines. 

4.2 Hardware Interface 
The hardware interface for the serial driver had to 
accomplish two major functions: Be able to drive the 
clock and data lines under control of the AVR, and 
be able to isolate the keyboard.

The data and clock lines are both normally held high 
(+5v) by pull-ups at both the keyboard and PC.  This 
enabled two transistors to pull the lines to ground and 
generate the clock and data pulses.  The isolation of 
the keyboard was more difficult as the lines (data and 
clock) essentially had to be treated as bi-directional 
lines.  A pure analog device was used to do the 
switching - a bi-lateral transmission gate. 

The final version of the keyboard interface contains 
transmission gates for keyboard isolation, transistors 
for driving the clock and data lines and an extra 
package of inverting buffers to provide some 
electrical isolation and also flip the control signal to 
the transistors (because of an inverting function which 
occurred as a result of the mode they were used in). 
The finished product looks remarkably uncomplicated, 
but is effective, simple and implements a reasonably 
elegant solution to the problem. 

4.3 Software 
As well as the hardware interface, a huge effort was 
spent implementing code to actually control and 
drive into the unit. Essentially, the basic keyboard 
protocol had to be emulated and welded together 
with the hardware.  A thorough understanding of the 
protocol, and plenty of preliminary testing was the 

key to coming up with a good solution here. 

Because the ACKI unit will store strings of text in 
ASCII representation, a conversion routine was 
needed to change ASCII codes into numerical codes. 
This table was implemented at no expense to code 
space, by placing the table into the ESEG (EEPROM 
segment) of the AVR memory architecture.  The 
code handles shifted and unshifted alphanumeric 
characters, as well as a relatively complete set of 
punctuation. Support for more characters is available 
by a simple modification to the lookup table. 

5. STORAGE SOLUTION 
Because of the requirement for the ACKI to be 
an independent and transportable device, it was 
necessary to be able to store 16kb of text data in 
non-volatile memory so that it could be transmitted 
at any time.  ATMEL FLASH memory was chosen for 
this task (Figure4). 

The ATMEL microprocessor used is able to control 
64kB of external memory (16 bit address) and so was 
able to map both SRAM and FLASH devices directly 
into the processors address space.  The SRAM is 
used as a high-speed buffer during download of 
changed text information by the user. 

By implementing the SRAM buffer, any download 
errors that occur can be detected and programming of 
the FLASH aborted.  The buffer is also used because 

Figure 4: Finished Storage/Microprocessor Board.  
(Some ICs are not inserted)
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writing to the FLASH device is moderately time 
consuming - it is loaded in 64 byte sectors and the 
programming operation then requires about 10mS.  
So, without implementing some flow control on the 
serial programming link, this hardware buffer offers 
a good solution. 

6. SOFTWARE
Although the ACKI is intended as a transportable 
device, requiring no software on the client computer, 
some software is needed to configure the device 
for an individual user.  An application was written in 
Delphi that allows the association of inputs to ASCII 
text strings (Figure 5).  The ASCII characters (up to 
255 for each of the 64 positions) can be written and 
sent to the ACKI in a few minutes.  This is also sent 
to a configuration file for easy editing. 

7. INTEGRATION
With all the component prototypes functioning, an 
integrated design was developed and constructed 
(Figures 6 and 7).  

Figure 6 shows the analog interfaces on the top 
board microcontroller/storage systems on the lower 
board.  The keyboard/PC is connected at the top right, 
keypad and joysticks on the top left.  The RS232 link 
is connected midway on the right hand side.

8. TESTING
8.1 Performance
The ACKI device performs as expected.  Instead of 
keys, a series of external controls from ACKI can 
be used to feed the computer with data.  Currently 

Figure 5:
Typical ASCII strings that the user sets
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Figure 6:
The completed circuit boards

Figure 7:
The full prototype



21

these controls consist of combinations of joysticks 
and pushbutton pads, either of which selects from 
eight options, giving a total of 64 possible strings 
from which to select.

The ACKI unit was designed to store approximately 
64 different strings of character data where each 
string contains a maximum of 200 characters.  The 
system was also designed to be a transportable and 
independent device, where data could be transmitted 
at any time, so it was necessary to be able to store 
16kb of text data in non-volatile memory.  This 
means that the predetermined strings can be ready 
programmed and stored permanently within the ACKI 
device.  Users may then select from eight pages of 

eight text strings using a combination of two input 
devices (Figure 8).

9. FURTHER RESEARCH
9.1 Human Computer Interaction
The prototype can now be used for user testing.  This 
will include user and task modelling techniques, along 
with keystroke modelling and GOMS testing.  
Preece et al.  (1994) described four components, 
which make up the usability requirements of a 
system.  Learnability, throughput, flexibility and 
attitude make up these guidelines. 
The GOMS method is also a useful construct.  The 
Goals describe the user’s goals (the tasks he or she 
wants to achieve).  For example, the user wishes to 

Figure 8:
One line is selected from eight pages of eight lines of text
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notify a caregiver of a need by selecting a specific 
line of text by using the ACKI device.  Operators are 
the basic physical actions that a user must perform 
in order to use the system.  In the case of the ACKI, 
the user could move the joystick, press a button on 
the keypad, or press the joystick trigger.  Methods 
involve a goal being split into smaller tasks, and 
there may be more than one method of doing so.  
Using different input devices with which to select 
ACKI text represented alternative possible methods.  
For example, to select a text page and then a line of 
pre-programmed text from the existing ACKI system, 
a combination of input devices would be used.  This 
describes which method (described above) it is that a 
user chooses to use.  The user can decide to use any 
two devices from the range of joysticks and keypads.  
Potential users may be unaware of the alternatives, 
but these options would be addressed within user 
documentation and training.

9.2 Second Prototype
A goal of ongoing research is to further develop the 
system with a second functional prototype suitable 
for continuing research and commercial application.  
The first prototype has a limited range of keystrokes 
available: namely the alphanumeric characters.  
To allow a full range of input, keystrokes such as 
backspace and return should be added.  To allow 
capitals, a shift register is needed, perhaps operating 
like the keyboard caps key.  

A second prototype should also parameterise 
some of the control structures of the device.  One 
limitation of the first prototype is the inability to vary 
the sequence and timing of positions that results in a 
‘keystroke’.  This could be brought out as a variable, 
to be programmed from the PC.

9.3 Commercialisation
This project plans to further develop the ACKI to 
the level where it may be considered a commercial 
product.  Further work will involve an assessment of 
commercial viability and a business plan.  This will 

also involve consideration of intellectual property 
and commercial partners.  There is also potential 
for development in other application areas.  A 
simple, transportable device that can act as an 
interface between sensors and PCs may have many 
applications beyond keyboard emulation. 
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