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1.  THE CASE STUDY AND ITS 
CHALLENGES

At its Wellington campus, the Information Systems 
Department of Massey University is developing a 
set of case studies each of which forms the basis of 
graduate diploma and 3rd year degree paper called 
Process Design Application.

As befits the aims of the paper, the assignment 
is practical in nature and requires students to 
demonstrate their understanding of the processing 
requirements of an application, for which they have 
the data model, by developing a working prototype.

One of the case studies is based on Te Kahui, 
the Collections Management system of Te Papa 
Tongarewa, the National Museum of New Zealand. Te 
Papa, a national icon situated within walking distance 
of the campus, is a Public Good institution with 
interesting and sophisticated information technology 
needs. As such, it has a specialised realism that 
makes it an appealing subject for educational study.

Students are asked to develop a prototype that 
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maintains museum catalogue records for any 
number of cultural and scientific collections such as 
Art, Birds, Crustacea, Maori, Molluscs, Philatelic, 
Photography, Reptiles and so on. A mature version of 
the system would also maintain details, both current 
and historical, of the acquisition, storage, insurance, 
restriction, deaccession, condition, treatment, 
movement, exhibition and archiving of items in these 
collections.

There are many interesting features to tax both the 
imagination of the designer and the features of the 
software tools, including the need to support data 
entries at any level of the Linnaean taxonomy of life 
forms.

Two features, though, are especially challenging 
because they require, in effect, the provision of 
special data types. Firstly, for specimens collected on 
field trips, the location of the find must be recorded 
with spatial coordinates of latitude and longitude. 
Secondly, cultural and natural history items alike 
require historical dates to be recorded that lie far 
beyond the scope of the date/time validation logic 
of normal commercial software.

2.  THE COMPLEXITY OF THE 
TASK

The complexity of the task of validating these special 
data types derives from the combination of the 
following features.

2.1  Superposition
A superposition of formats is implied. An historical 
date field may contain an AD, BC, or BP date. (BP 
dates are before the present era. We are currently in 
the Cenozoic era, which began about 65 million years 
ago after the mass extinctions of the Cretaceous 
period, so BP dates begin 65 million years ago.) 
Each of these variants has different validation rules 
for its year number. Spatial coordinates may be 
either latitude or longitude, which also have different 
validation rules. As we will see, these are probably 
better implemented as two separate types, in which 
case there will be no superposition.

2.2  Tight Editing
Tight editing and formatting are important. The user 
needs spatial coordinates and historical dates that 
are strictly normalised so that range searching on 
these fields will deliver accurate results for a mature 
database that has been maintained by many different 
users.

2.3  Ease of Data Entry
Editing should make data entry easy and convenient. 
Missing values should be supplied so that, for 
example, if a longitude of 170W is entered, 
it is converted to 170 00.00 W. A number of 
common delimiters should be recognised so that the 
coordinates 170,30W, 170;30W, and 170/30W are all 
converted to 170 30.00 W. Dates default to AD but the 
AD period can be explicitly shown if required.

2.4  Smart Editing
Editing should be smart. For example, the circa 
qualifier should be recognised no matter where 
it is placed so that c1870 and 1870c are treated 
as equivalent. The user should not be expected 
to supply leading zeros. Degrees of latitude, for 
example, must be padded to two digits, whereas 
degrees of longitude require three. Minutes of latitude 
and longitude are optional. If entered, they may 
include decimal fractions but the decimal point is not 
required for whole numbers of minutes.

2.5  Structure
Both data types have a bit of structure that their 
validation functions need to decipher. Coordinates 
have degree and minute parts and a compass point 
of N or S for latitude and E or W for longitude. Dates 
can be AD, BC, or BP and may also be qualified as 
circa (c), decade or century (s), or uncertain (?).

2.6  Consistency Checking
This structure implies some consistency checking. 
For example, N(orth) is valid for latitude, but not for 
longitude. 180 is the maximum degree of longitude 
but 90 is the maximum for latitude. 1999 is a valid 
year, but is incompatible with the decade or century 
qualifier.
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3.  A MODEL ANSWER
Because of this complexity, it was thought prudent 
to code a solution to the task of validating these 
data types before asking students to attempt it. The 
resulting program, checker.exe, returns a Boolean 
analysis of the validity of each entry and a message 
describing its format. The form layouts of the program 
are included here as an appendix.

The task took about 400 lines of Visual Basic code 
to solve. This figure includes a number of blank lines 
added to aid legibility but does not include the code 
attached to the forms that allow the two validation 
functions to be demonstrated.

Students taking the paper are in the Information 
Systems stream of a business-oriented qualification 
and cannot be expected to have a Systems 
Development focus. The programming skills of the 
average student will be rudimentary. Including the 
design and implementation of these two complex data 
types in the prototyping task would risk turning what 
is already seen as an overly technical assignment 
into one that is intolerably so.

Consequently, it has been decided to supply the 
validation functions as instructive solutions and 
to invite the students to incorporate them in their 
prototype, modifying them as they see fit.

Even so, challenges remain. Entering the data 
is just the beginning. Values then have to be 
retrieved, selected, and sorted, which will not always 
straightforward. In a range check, for example, the 
decade or century qualifier itself implies a range, so 
a search on dates that fall between 1925 and 1935 
should include items whose date shows as 1920s.

4.  A BETTER TOOLSET
Given the toolset the students are expected to 
use (typically a system written in Visual Basic that 
connects with an MS Access database), there does 
not seem to be any feasible way of validating and 
normalising these data types other than by coding the 
sort of functions that appear in the model answer.
The format and input mask features in MS Access 

don’t help because we would need to be able 
to define several different formats or masks and 
superimpose them. (Formats can force particular 
values or types of values into a character string in a 
nominated position. An input mask does the same 
but the special characters are not stored with the 
rest of the data).

Even if different formats could be superimposed, we 
want to provide normalization, not just enforce it. The 
input rules must be very permissive, standardizing 
the format and supplying missing data. This almost 
certainly requires program code attached to a data 
type that is run whenever an instance of the type 
is processed. Even if formats and masks could be 
made to work, we would not want to have to specify 
a complicated set of them for every occurrence of 
a type.

Like most languages, Visual Basic includes a Type 
statement that allows the user to define her own data 
structures. However, this merely allows a compound 
structure to be defined in terms of the elementary 
data types that come with the language. We are 
perfectly happy with the elementary String data type: 
we would just like to be able to define a number of 
different string patterns and superimpose them.

If we were writing in ANSI COBOL, we might be able 
to do the job using lots of REDFINE clauses in the 
data division, but we would still need to repeat all that 
work for each declaration of a special data type.

What we really need is a language that has extensible 
data types so that users can define their own special 
types and incorporate them into the language to be 
used in the same way as the built-in system types.

5.  EXTENSIBLE DATA TYPES
5.1  High Hopes for Object-

orientation
Most toolsets do not provide extensible data types. 
Powerful products such as the Oracle Designer 2000 
case tool go some way towards providing the sort of 
features required, but even there user-defined types 
are little more than a named data structure that is 
declared as part of one table in a way that makes it 



156

reusable in others.
A good theoretical account of the main features that 
are needed to implement user-defined types can be 
found in Date 2000, section 5.2 and chapter 19. The 
examples of coded type declarations in this paper 
are original, written to suit the data types of the case 
study. The language used is Tutorial D, which follows 
Date 2000.

In general, what we want is the ability to define data 
types that become part of the toolset used within the 
organization. We do not want to have to define special 
data types anew for each application.

Further, we need declarative integrity support so that 
typing errors can be detected at compile time, not just 
at runtime. A language that provides only procedural 
integrity support is not good enough. There, type 
error logic is coded in procedures and takes effect 
only when those procedures are executed [Date 
2000, 250].

Object-oriented tools are the obvious candidates for 
acquiring this ability.

Firstly, an object class, the fundamental concept of 
object-orientation, is a data type that either comes 
with the system or can be defined by the user [Date 
2000, 122-3].

Secondly, object classes can be of arbitrary complexity 
and are therefore well suited to instantiating 
problematic kinds such as “… time series data, 
biological data, financial data, engineering design 
data, office automation data, and so on” [Date 2000, 
863-4].

If an object-oriented database is used, extensible 
typing has the effect of moving semantics from 
applications into the database [Loomis 1995, 40]. 
This provides a consistency of type checking across 
all applications, which is highly desirable.

But object-orientation, though sufficient, may not 
be necessary. Date devotes an entire chapter of his 
book to arguing that the relational model is capable 
of being extended to include the best features of 

object-orientation, including extensible data types. 
Whatever the tools, they need to provide support 
for the central concepts of data typing: possible 
representations, components of representations, 
type constraints, and operators. The need for type 
inheritance is also considered.

5.2  Possible Representations
We should be familiar with the idea of a data type 
being encapsulated in the sense that its physical 
representation is hidden from the user and where 
what the user sees is merely one of the possible 
representations of a value of that type [Date 2000, 
115-9].

For example, when SQL received its first major 
revision about 1992, the resulting language SQL2 
extended the set of built-in data types to include times 
and dates [Eaglestone and Ridley 1998, 341]. We 
can imagine the date on which William I of Normandy 
and Harold II the Saxon King of England fought the 
Battle of Hastings as being represented in various 
ways, such as:
 October 14, 1066
 14 Oct 1066
 1066 287

The last of these is sometimes known as the “Julian” 
date format, and should not be confused with the 
Julian calendar. It provides a convenient way to 
ensure that records sort correctly into date order 
without requiring special formatting.

Regardless of how the date is stored on disk, it must 
be possible to define a user view of the value in any 
of the available representations. This implies that 
the stored type must be translatable from any of its 
representations to any other.

Another example, [from Date 2000, 117 and 
elsewhere] is that of a geometric point, which can be 
represented by either a pair of Cartesian coordinates 
(the usual convention), or by polar coordinates 
(where the point is arrived at by rotating a radius of 
length R through ?degrees).

Now it should be obvious that the cases we are 
considering of spatial coordinates and historical dates 
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do not really need more than one representation. 
Latitudes and longitudes are different domains, not 
alternative representations of the same domain. 
Similarly, BP, BC, and AD dates are not alternative 
ways of expressing a year number. The way our 
case study defines them, they are mutually exclusive 
domains. The year 65,000,001 BC is not the same 
as 1 BP: it is invalid.

However, if our case study were ever required to 
exhibit cultural sensitivity and cater for calendars 
other than the Gregorian, such as Hebrew, Chinese, 
Hindu, or Muslim, a possible representation would be 
needed for each. Although modern and future years 
could be expressed in any form, some years would 
be invalid under some representations. For example, 
year 621 in the Gregorian calendar would be invalid 
in the Muslim, being the year before Mohammed fled 
from Mecca to Medina. One would need to introduce 
BM dates (before Mohammed) or the like to the 
Muslim calendar to correct for this.

5.3  Components of Representations
Possible representations have components. Because 
our data types need only one possible representation, 
their declaration might look like
TYPE LATITUDE

 POSSREP (DEGREE INTEGER,

   MINUTES REAL,

   NS CHAR);

TYPE LONGITUDE

 POSSREP (DEGREE INTEGER,

   MINUTES REAL,

   EW CHAR);

TYPE HISTDATE

 POSSREP (YEAR INTEGER,

   PERIOD CHAR,

   DCIND CHAR,

   APPROX BOOLEAN);

In each case, the POSSREP name is omitted so that 
it will default to the TYPE name. Types with multiple 
representations must name them individually.
Variables of these types could then be declared, 
such as

 LastSeenAtLat: LATITUDE;

 LastSeenAtLong: LONGITUDE;

 DateOfOrigin: HISTDATE;

How a value is represented is a related but separate 
issue from how values are displayed. The present 
version of the case study asks that the “AD” be 
optionally displayed for those dates, but other 
formatting might well be requested too. For example, 
instead of “1000000000BP” we might prefer to see 
“1B BP”, using “B” to abbreviate “billion”. Similarly, 
instead of “7000000BC” we might prefer “7M BC”, 
where “M” abbreviates “million”.

The “B” and “M” values do not form part of a 
representation. Instead, they are modifiers in the form 
of a mask that causes data to be transformed as it 
passes between the storage area and the display 
medium. Such transformations would be coded as 
part of the Get and Put operators (see 5.5 below). 
Similarly, comma or space separators could be 
supplied to make large year numbers more legible.

5.4  Type Constraints
We would use type constraints to limit the range of 
values to just those we want to be valid for the type 
in question [Date 2000, 251-2]. To be more accurate, 
the constraints are specified for the components of 
each possible representation, but we have agreed 
that the types in our case study will have only one 
such representation.

Much of the code in the functions of the checker.
exe program will find its way into these constraint 
statements. For example, to ensure that years are 
not equal to zero we might code
TYPE HISTDATE

 POSSREP (YEAR INTEGER,

  PERIOD CHAR,

  DCIND CHAR,

  APPROX BOOLEAN)

CONSTRAINT THE_YEAR (HISTDATE) <> 0;

As long as our language allows compound 
expressions that can range over all components 
of a representation, we should be able to code 
consistency checks this way as well.
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Another desirable feature would be the ability to 
return constraint-sensitive error messages when an 
invalid value is detected. Instead of a general error 
condition, such as
 Value conflicts with data type

we would like to be able to return

 Invalid: latitude degrees > 90

 Invalid: AD date > 10000

and so on.

5.5  Operators
Constraints can be given user-defined names that 
allow them to serve as operators. Together, these 
operators are defined on the possible representations 
of a domain and specify all its possible legal 
values.

Values are maintained solely by operators defined on 
their domain. That is, the physical representation of a 
domain’s values remains hidden [Date 2000, 114].

We can distinguish between “observer” and “mutator” 
operators. Observers GET values for a client while 
mutators PUT or SET them [Date 2000, 120 footnote]. 
Constraints are checked whenever a mutator 
operator is used.

It is also possible to select a value of a particular 
type by specifying the values of its components 
[Date 2000, 117]. For example, we could speak of 
the value
 LATITUDE (25, 59.99, N)

THE_ operators allow these components to be 
addressed individually. This makes components 
visible to the user, but the data type as a whole is still 
encapsulated: what is visible is the component of a 
representation [Date 2000, 115 point 4].

Selector operators can be used to achieve type 
conversions. For example, if the YEAR component 
of an historical date needs to be compared to an 
integer, the integer can be coerced into the same 
type to avoid a typing error, effectively producing, 
for example,
IF THE_YEAR (DateOfOrigin) = THE_

YEAR(2000) THEN ...

This selection ability provides functionality well 
beyond that of the model answer written in Visual 
Basic.

5.6  Type Inheritance
Inheritance is one of the hallmarks of object-
orientation, but would it help our present cause?

Probably not. When it comes to performing the work 
done by the functions in our model answer, type 
constraints provide the most useful feature.

Assuming we would implement spatial coordinates as 
two separate types, there may be some advantage 
to be gained by splitting the work between a 
supertype SCOORD and its two subtypes LATITUDE 
and LONGITUDE. Some of the constraints on 
the DEGREE and MINUTE components could be 
specified at the supertype level, while the remaining 
ones and the checking of the compass point 
components NS and EW would be specializations 
at the subtype level.

However, this seems a bit clumsy and the potential 
gains in terms of future expansions of the hierarchy 
seem limited.

6.  DATA TYPE BICULTURALISM
One of the most attractive prospects of using an 
object-oriented DBMS is that developers do not have 
to deal with what we can informally call data type 
biculturalism. A seamless transition can be made 
from the types available for holding transient data to 
those available when moving it to a persistent store. 
As Mary Loomis puts it,
“The extensible type system gives the object database 
the ability to provide persistence for any kind of data 
that applications need. Applications are not required 
to translate objects from the programming language 
types to a set of built-in database types.” [Loomis 
1995, 32]
When we add to this benefit the feature we noted 
in 5.1 above that object-oriented databases move 
the semantics of type checking from applications 
into the database, we have a significantly improved 
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programming environment.
Of course, not all object-oriented products can be 
expected to deliver this second benefit. As Loomis 
points out, “Even though a fundamental principle 
of object technology is the close coupling of data 
structure and applicable operations into objects, 
most object DBMS products currently manage only 
states, in the form of data structures …, leaving 
the behavioral aspects of objects to the object 
programming languages.” [Loomis 1995, 47]

The combination of Visual Basic and MS Access 
obviously fails on both counts: although it supports 
object classes, it does so only on the programming 
language side of the bicultural divide and the 
database side supports neither object states nor 
object behaviour.

7.  THE EXTENDED RELATIONAL 
MODEL

So far, the clear favourite as a toolset for our special 
data types is one that includes an object-oriented 
DBMS that stores and executes operations in the 
database engine rather than in application space. 
Loomis identifies Servio’s Gemstone and Hewlett 
Packard’s OpenODB as products that do this [Loomis 
1995, 47-8].

In most organizations, however, there is too 
valuable a legacy of application code to contemplate 
abandoning all the code written in, say, C++ and 
rewriting it in, say, an object-oriented version of SQL. 
It would be preferable to use a database whose 
engines speaks the application language.

It is still far from certain that object-oriented DBMSs 
will ever cross the chasm between early adopters 
and early majority in the market maturation model  
(Loomis 1995 205-8 contains an interesting 
discussion of this.) The dominance of the relational 
database model is such that a smooth conversion 
to a so-called “third generational” RDBMS would be 
more acceptable to most organizations than a jarring 
change to an object model.

In any case, how superior is the object model? 

Eaglestone and Ridley argue that the object-oriented 
data model is superior to the relational model because 
of its ability to incorporate real world meaning.

“The strength of [object-oriented technology] is 
that, instead of having a fixed number of different 
types of abstraction for different types of real world 
phenomena built into the model, an extensible type 
system allows designers to define new types to model 
different types of real world information.” [Eaglestone 
and Ridley 1998, 354].

When one compares the relational model as 
implemented in available products, this seems 
correct. However, C.J. Date has argued that the 
available products do not do justice to the full power 
of the relational model, which, like the object model, 
in fact allows for domains of arbitrary complexity.

This raises the possibility of a relational model 
extended to provide the best features of object-
orientation, such as extensible data types.

In appendix B of Date 2000, an account of one of 
these “third generational” RDBMSs is given. The 
SQL3 standard is described, which includes such 
features as

• Composite attributes
• Relation-valued attributes
• Methods for tables
• Subclasses.

Unfortunately, SQL3 commits what Date calls “The 
Great Blunder” [Date 2000, 865, 907-8], which is to 
equate tables with object classes instead of equating 
domains with object classes.

Several arguments are advanced to show why this 
standard, though admirable in other ways, commits 
The Great Blunder.
One of these arguments seems pertinent here. We 
need time-independent integrity checks, not time-
dependent ones, and implementing objects as tables 
rather than domains makes the outcome of integrity 
checks depend on table contents, which can vary 
over time [Date 2000, 870].
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This is a problem that would need to be addressed. 
The object model seems to be the preferred option 
for implementing the special data types we have been 
considering here. An version of the relational model 
might well be another option, but we would need to 
be able to implement our special types in a way that 
encapsulated them from application programmers. 
The types should be an extension of the data 
definition language, not a set of integrity checks held 
on a table that anyone can modify.

8.  CONCLUSIONS
Starting with a realistic case study, we have seen 
how two special data types in it pose problems for 
students and staff alike. Students working on the 
case study would find coding the validation and 
normalization logic too demanding. Staff can provide 
the necessary code as instructive solutions, but there 
is no way to provide it where it belongs: as part of 
the toolset.

Object-oriented systems support extensible typing 
because special types can be implemented as 
object classes and variables can then be declared 
as being of those classes. We would then hope 
to have an object-oriented database that avoids 
data type biculturalism. That is, we want the set of 
types available to the programming language to be 
the same as the set used when persistent data is 
stored.

Object-oriented databases have still not crossed the 
chasm between early adopters and early majority 
and may never do so. A database with a relational 
model extended to include the main benefits of 
object-orientation may prove the most acceptable 
way of obtaining the sort of features we are looking 
for. Any such system that treats objects as tables 
instead of domains may still not accommodate our 
special data types satisfactorily though. We need 
types whose rules do not rely on the time-dependent 
content of tables.
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APPENDIX
Visual Basic forms for the model answer
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Figure 1. 
Latitude/Longitude Checker

Figure 2. 
Historical Date Checker


