
239Proceedings of the NACCQ
Napier New Zealand July 2001
www.naccq.ac.nz

students. You want to equip them with skills that
will still have relevance in twenty-five years time.
Computing machinery will probably be very different
by 2001 (which will be the winner: paper tape or
punched cards?) So will the environment in which
your students are employed.

We all know what happened: the employment scene
was transformed beyond recognition. There was
one constant – the change itself, and the technology
powering it. Twenty-five years ahead, we can expect
continuing advances, and therefore employment, in
science and engineering. That’s more than can be
said for any other area. If you don’t believe me, ask
your local unemployed bank manager. Back in 1976,
it all looked so secure.

It follows that our programming techniques should be
relevant to the arenas of science and engineering.
Yet the requirements in these areas often differ from
those of commercial programming. For the purpose
of this paper, I’ll suggest three areas where the needs
of the two communities differ: economy of expression,
speed of execution, and object orientation.

ABSTRACT
For programmers, the only constant is
technology-driven change. For this reason, it
is appropriate that the coding we teach and
produce is technology-friendly. That is, its
style can be adapted for use in a scientific or
engineering environment. In this paper I discuss
the appropriateness of some programming
techniques in scientific environments, and
suggest promoting three specific skills: economy
of expression, program efficiency, and a greater
emphasis on procedural approaches.

It is not argued that object orientation should be
diluted or minimised within our courses.

KEYWORDS
Scientific programming, procedural, object
orientated, variable name, economy.

1. INTRODUCTION
Imagine: it’s 1976, and you have to devise
a meaningful course in computing for your

Technology-Friendly Programming

Rob Campbell
Whitireia Polytechnic

Porirua City, New Zealand
r.campbell@whitireia.ac.nz

240

2. ECONOMY OF EXPRESSION
Teachers and textbooks frequently advocate the use
of long, meaningful names, sometimes with Hungarian
prefixes thrown in. In scientific programming, this
is not always a good idea. Which of these code
segments in Figure 1 do you prefer ?

From a coding perspective, the two are identical. You
can probably dredge up enough high school science
to follow the reasoning behind the second version,
but the first…

The formulas in the first case are obscured by
the names, whereas in the second they are quite
readable. Since in this situation, it’s the formulas
that are most likely to conceal an error, these should
always be presented in the most familiar way using,
wherever possible, short variable names.

The aim remains the same: clarity of expression.

3. SPEED OF EXECUTION
Much commercial software is produced rapidly.
Unfortunately it is unlikely to run rapidly. Rapid
application development tools are appropriate for
many environments; time-critical situations such as
process control and data acquisition are not among
them. Students should be capable of writing lean,
efficient code, and should appreciate that elaborate
user interfaces may carry unacceptable speed
overheads.

4. PROCEDURAL VS OBJECT
ORIENTATED CODE

Like any other, scientific and engineering applications
benefit from this approach too. But there remains
a wide range of situations where object orientation
can be positively unhelpful. Algorithms required
to calculate orbital ellipticity or stress tensors tend
to be ‘one off’; there is no need to spawn objects
or inherit methods. They are an unnecessary
computational overhead, and a procedural approach
is recommended. It follows that students should be
familiar with procedural programming.
I am not proposing a return to spaghetti code or

a rejection of the advances of the last decade.
Nonetheless, students can gain the impression that
object orientation is the only approach; that it solves
all problems and is universally applicable. This is
not the case, and we should communicate a range
of methodologies, including the procedural approach,
which in a number of areas may offer a simpler and
more elegant solution.

5. CONCLUSION
In teaching ‘business’ computing we may at times
have neglected the technology underpinning those
businesses. It is appropriate that we communicate
programming styles that are relevant to, and
appropriate in, a scientific environment. Specifically,
students should be aware of the advantages gained
through economy of expression, efficient code, and
judicious use of a procedural approach.

REFERENCE
Ken Ritley, Scientific Computing in Java (Part

2): Writing Scientific Programs in Java, Game-
lan http://softwaredev.earthweb.com/java/arti-
cle/0,,12082_631281,00.html

241

int main()

{

 double dPotentialEnergy, dKineticEnergy, dTotalEnergy;

 double dMassOfObject, dVelocityOfObject;

 double const dAccelerationOfGravity = 9.81;

 double dHeightOfObject;

 cout << “Please enter mass (kg), velocity (m/s) “;

 cin >> dMassOfObject >> dVelocityOfObject;

 cout << “Please enter height (metres) “;

 cin >> dHeightOfObject;

 dKineticEnergy = 0.5*dMassOfObject*dVelocityOfObject*dVelocityOfObject;

 dPotentialEnergy = dMassOfObject*dAccelerationOfGravity*dHeightOfObject;

 dTotalEnergy = dKineticEnergy + dPotentialEnergy;

 cout << “\nKinetic energy = “ << dKineticEnergy;

 cout << “\nPotential energy = “ << dPotentialEnergy;

 cout << “\nTotal energy = “ << dTotalEnergy;

 getch();

 return 0;

}

int main()

{

 double PE, KE, E; // potential, kinetic, total energy

 double m, v; // mass, velocity

 double const g = 9.81; // gravity

 double h; // height

 cout << “Please enter mass (kg), velocity (m/s) “;

 cin >> m >> v;

 cout << “Please enter height (metres) “;

 cin >> h;

 KE = 0.5*m*v*v;

 PE = m*g*h;

 E = KE + PE;

 cout << “\nKinetic energy = “ << KE;

 cout << “\nPotential energy = “ << PE;

 cout << “\nTotal energy = “ << E;

 getch();

 return 0;

}

Or this?

Figure 1

