
375Proceedings of the NACCQ
Napier New Zealand July 2001
www.naccq.ac.nz

1. INTRODUCTION
One of the prime objectives of designing digital
logic circuits including the PLA and PAL, is to keep
the number of logic gates as minimum as possible,
therefore reduce the production cost of these
systems. To simplify the complexity of a circuit, the
designer must find another circuit that computes the
same function as the original but does so with fewer
gates (or perhaps with simpler gates, for example,
two-input gates instead of four-input gates).

Boolean algebra, reduction of Boolean expressions,
and logic gates are often included in computer
science and/or engineering courses as fundamental
concepts involved in computer hardware and
digital systems design. Furthermore, it is essential
to explain and demonstrate how complex logic
expressions are minimised (simplified) to produce
the final simplified diagram.

Minimising Boolean expressions using the traditional
methods such as truth tables, Boolean algebra, and
K-maps can be very tedious and not well suited

ABSTRACT
The minimisation of complex logic gates is
important to simplify the hardware design
of programmable logic arrays (PLAs) and
programmable array logic (PALs). The result
of minimisation is a considerable reduction
of production cost of these digital systems.
Quine-McCluskey (Q-M) is an attractive
algorithm for simplifying Boolean expressions
because it can handle any number of variables.
A menu-driven keyboard-based software
package has been developed, in C language
under MS Windows, to implement the Q-M
algorithm for logic gate minimisation. Based
on user input (i.e. logic expression), the system
displays the sum of product (SOP) functions,
as well as minimised logic gates diagram. Q-
M algorithm and its software implementation
are described. The experimental results
demonstrate successful implementation, and
the simplicity of the user interface, makes the
package a useful teaching and learning tool
for both students and tutors.

KEYWORDS
Logic gate, Boolean expression, Quine-
McCluskey algorithm, Sum of product (SOP)

Software Implementation of the
Quine-McCluskey Algorithm for

Logic Gate Minimisation

Nurul Sarkar, Khaleel Petrus
School of Information Technology

Auckland University of Technology
Auckland, New Zealand
Nurul.Sarkar@aut.ac.nz

Khaleel.Petrus@aut.ac.nz

Hosneara Hossain
Department of Computer Science

North South University
Dhaka, Bangladesh

376

for expressions involving more than six variables.
Fortunately, the Quine-McCluskey (Q-M) algorithm,
also called tabular method, is an attractive solution
for minimising complex Boolean expressions
involving variables of any length. Moreover, the
algorithm can easily be machine implemented.
Both students and lecturers can use the software
tool to verify (interactively and visually) the results
of Boolean expression minimisation. Pursuing
this goal, a software package has been developed
(written in C language under MS Windows) that
not only automate the minimisation (reduction) of
Boolean expressions but also display minimised
expression and its logic circuit diagram.

Digital Systems design has been addressed in
many references eg. Mano (1984), Tanenbaum
(1999), Green (1985), and Greenfield (1977). Quine
McCluskey algorithm is described extensively
in literature eg. Costa (2001), Hideout (2001),
Carothers (2001), and Hintz (2001). Grimsey (2000)
examined the strengths and weaknesses of various
methods of minimising Boolean expressions,
including truth tables, Boolean algebra, and
Karnaugh maps (K-maps). Lockwood (2001)
presented simple text based program for the
implementation of the algorithm. However, it is of
limited use as a teaching and learning tool. Leathrum
(1997) described and presented a text based menu
driven program for Q-M algorithm, but the user
interface is rather difficult to use.

The paper is organised as follows. In section 2,
the Q-M algorithm for logic gate minimisation is
described . The software development process is
described in section 3. Test result, which verifies
the successful implementation of the Q-M algorithm
is presented in section 4. Section 5 presents
conclusions and future work.

2. QUINE-MCCLUSKEY (Q-M)
ALGORITHM

The Q-M algorithm is a way to reduce Boolean
expression to its simplest form. It is designed
particularly for use with problems containing six
variables or more, but can be used for smaller
problems as well. The algorithm is based on

repeated applications of the distributed law and the
fact that X OR (NOT X) is always true. The Q-M
method is a systematic way of selecting the pairs
to be used for simplification. The main steps in the
Q-M algorithm are summarised below:

• Representing all addends as sums of minterms
• Grouping the minterms that has the same number

of ones
• Merging the terms that differ in only one bit (this

is done in several steps)
• In order to find the irredundant cover we use the

Min-Cover Algorithm:
 1. Find all distinct minterms.
 2. Find all essential prime implicants.
 3. Find all the minterms that are covered

by the essential prime implicants.
 4. Remove all minterms and prime impli-

cants found in 1-3.
 5. Choose that prime implicant that covers

 most of the remaining minterms.
 6. Repeat 5 until all minterms has been

covered.

3. SOFTWARE IMPLEMENTA-
TION

Structured analysis and design (Pryor, 2000)
has been employed to design the package. C
programming language under MS Windows
environment has been used in the implementation.
Figure 1 illustrates the structured diagram of the
logic gate minimisation package.

3.1 User Interface
For simplicity and ease of use, it has been decided
to implement menu-driven keyboard-based interface
with few menu options. The interface is easy to use
and self-explanatory which makes the package well
suited for students and tutors for classroom use.
Therefore, the package can be an integral part of
a two-hour session for teaching and learning Q-M
method for logic gate minimisation. An in-class task
will be given to the students to produce minimised
logic diagram on paper. After prescribed period
of time (say 20 minutes), the package will be
introduced to the students in a step by step basis
to verify their solution.

377

Figure 1.
Structured diagram of the logic gate minimisation package

Figure 2.
Minimised output expression and logic gate diagram

378

4. RESULTS
To evaluate its proper operation, the package has
been tested to minimise a number of Boolean
expressions, each involving different number of
input variables. Then the test results were validated
manually. Figure 2 shows a sample test result for
four variables (A, B, C, and D) Boolean expression
minimisation. The following minterms have been
entered from the keyboard: [0,2,3, 5,7,8,10,13,15],
and the package had produced the simplified logic
gate diagram as well as output expression (see
Figure 2).

5. CONCLUSIONS AND FUTURE
WORK

A software package has been developed for logic
gate minimisation, which can be used as a teaching
and learning tool for verifying results of Boolean
expression minimisation. The package is easy to
use and can be run from any machine operating
under MS DOS/Windows. It was also tested on
various PCs and found to be robust.

Currently, the system minimises Boolean expressions
involving variables of size 8, which is adequate for
demonstration purposes. The package can be easily
upgraded to accommodate variables of any length.
The user options: “New”, “Min/Out”, and “Quit”
have been implemented. More options, eg. “Save”,
“Load” and “Help” are still under development and
incorporation of mouse-based user interface is also
suggested for future work.

REFERENCES
Costa, A. (accessed April 20, 2001) “The Quine-

McCluskey Method”.
<http://www.dei.isep.ipp.pt/~acc/bfunc>
Carothers, J. D. (accessed April 20, 2001) “Quine-

McCluskey Algorithm”. <http://www.ece.arizona.
edu/~csdl/474aslide4>

Grimsey, G. (2000) “The TRUTH, the Whole TRUTH,
AND/OR NOThing but the TRUTH”. New Zealand
Journal of Applied Computing & Information Tech-
nology,4(1):42-52.

Green, D.C (1985) “Digital techniques and systems”

2-nd edition, Longman Scientific & Technical,
England.

Greenfield, J.D., (1977) “Practical digital design us-
ing ICs” John Wiley & Sons, Inc., USA.

Hideout, G. (Accessed April 20, 2001) “The Quine-
McCluskey Method of Logic Reduction”,. <http://
www.geekhideout.com/qmm.shtml>

Hintz. (Accessed May 13,, 2001) “Quine-McClus-
key Method”. <http://www.cpe.gmu.edu/courses/
ece331/lectures/331-8/sld001.htm>

Lockwood, J.D. (2001) “Quine-McClusky algorithm;
Computational techniques”. Cygwin Freeware
(GPL) Tools, Washington University, February
26, 2001 <http://www.arl.wustl.edu/~lockwood/
class/coe460/>

Leathrum J.F. (1997) “Quine McCluskey Tabular
Minimization Method”. Old Dominion University,
<http://www.ece.odu.edu/~leathrum/ECE241_
284/support/quine.html>

Mano, M. (1984), “Digital design”, Prentice Hall,
USA.

Pryor, J. (2000) “PD_PP100 Course Notes”. Com-
puting Systems and Technology, Auckland Uni-
versity of Technology.

Tanenbaum, A. S. (1999) “Structured computer
organization” 4th Edition, Prentice Hall, Inc.

