
67Proceedings of the NACCQ
Napier New Zealand July 2001
www.naccq.ac.nz

language but a set of rules for building markup
languages (Ray, 2001, pg2; W3C.org). It enables you
to build a standard markup for a document, or to use
a standard that someone else has defined, to enable
data transfer between business systems. It is a way
to define a standard for data exchange. It is a way
of marking up a document for content. It is a way of
marking up a document that can then be used as a
feed to a range of different data presentations.

Most computer professionals are now familiar with
HTML - a way of marking a document for display.
XML is a way of marking a document for content.
There are many confusing articles about XML that
talk about XML databases, migrating a database to
XML or searching an XML database (Williams, 2000;
www.oasis-open.org) that can lead you to think that
XML is some new type of database. A collection of
XML documents could be described as a database but
is a very poor way to store and manage data (Mertz,
2001a). XML is mostly a “standard for automating
data exchange between business systems” (Banfield,
2001), i.e. it is an improvement - a big improvement
- on using a comma-separated file because the data
descriptions are contained within the file (document).
It is mostly a format for data exchange, a protocol,

ABSTRACT
XML – eXtensible Markup Language. A way
to markup a document for content. A standard
for data interchange that is being used for B2B
transactions. XML is designed for use with
data-centric documents. Williams et al, 2000
describe a method for mapping a RDBMS
structure to an XML DTD. A non-trivial real-
world example was selected, that of course
outlines. A RDBMS was designed for course
outlines and the structure mapped to a DTD.
The DTD plus a sample document was initially
validated using Internet Explorer. It was further
checked using an on-line validator. The DTD
was subsequently revised in line with guidelines
for good XML.

1. INTRODUCTION
XML - yet another computer industry acronym.
XML - eXtensible Markup Language. So what
is it and why would you want to use it?

In spite of its name XML is not a markup

The X files – an XML Xperience

Dave Kennedy, Dr Mike Lance
School of Computing

Christchurch Polytechnic Institute of Technology
Christchurch, New Zealand

kennedyd@cpit.ac.nz

68

which makes automating the data exchange possible.
It is seen as an easier format than EDI to implement
as a comms format between businesses (Banfield,
2001). Its key benefits are:

• Flexibility - it can be used to describe any collec-
tion of data and in several ways. This description
(the Data Type Definition, DTD) then imposes a
standard structure on all documents using that
particular description.

• Simplicity - it is a text format that is easy to send
and process. This has a downside: to find data
requires it to be scanned line by line.

• Multipurpose - it is a way of presenting the same
data to different users (Banfield, 2001; Punin,
2001).

XML is a way of marking up the data content of a
document. A related technology XSLT (XML Style
Language Transforms) provides a way of presenting
the data. An XML document can be presented in
many different ways by using different style sheets
or different applications (Ray, 2001, chap 4).

Bourrett, 2000 distinguishes between data-centric
documents e.g. sales orders, flight schedules and
document-centric documents e.g. books, email,
adverts. Data-centric documents are for computer
consumption, document-centric documents for
human consumption. Furthermore the data in data-
centric documents needs to be kept in a DBMS
and document-centric documents kept in a context
management system (Bourrett 2000, Mertz 2001a).
Many of the larger examples of XML are document-
centric and are based on the Docbook vocabulary
(Ray, 2001). XML is becoming accepted as the
standard for data exchange with suppliers now
providing support for XML (Punin, 2001). In particular
XML documents can be validated and viewed using
Microsoft Internet Explorer (Lee, 2001) and SQL
server 2000 enables SQL results to be converted to
XML (Wahlin, 2001).

XML articles generally use trivial examples to
illustrate the principles. Williams et al use a simple
customer, invoice, invoiceline example to explain
their eleven rules for creating a DTD based on
the database structure. Ray 2001 uses a simple
chequebook example to illustrate XML concepts.
XML may well be relatively simple but implementing
a real-world application is obviously not all that easy

(Banfield, 2001).

The aim was to learn about XML by applying it to a
real-world situation. Course outlines were chosen.
This paper documents our experience to date as we
work towards a database for course outlines that can
be extracted as XML documents which in turn can be
used by a number of different applications.

The School of Computing (CPIT) offers a range of
computer programmes from CIC to BBComp. Each
programme contains a number of courses. For any
given semester there are approximately 150 different
courses on offer. Each has a course outline, based
on a standard MS-Word format, that is updated by
the course lecturers. Each student receives a course
outline at the beginning of the course. However the
information contained in course outlines is used in
a number of other areas - brochures, web pages,
front office information. In particular it requires skilled
workers to take existing information and re-format
it for on-line delivery. Staff often spend time cutting
and pasting information from course outlines to use
in other applications. As course outlines change
often the information in brochures etc is not updated
and so “Official versions” of the same thing get out
of sync. It was this aspect of the information cycle
that suggested maybe it would be more efficient if
course outlines were converted to XML documents.
The information could then be easily presented in a
variety of ways. The ideal is to write once and then
re-publish in different formats automatically.

2. METHODS
The aim was to produce:
a an XML DTD for course outlines
b a well-formed and valid XML course outline docu-

ment.

The Document Type Definition (DTD) describes the
structure and syntax of an associated XML document.
It defines the element and attribute names and
their data type, their order within the document and
whether they are optional or mandatory components.
A well-formed XML document follows the syntax rules
for XML as defined by the W3C. i.e. the root element
must contain all the other elements, each element
must nest inside any enclosing elements properly

69

and each start tag must have a corresponding end
tag (Punin, 2001). An XML document should also
be valid i.e. it conforms to the pattern described by
the associated DTD. This will provide an automatic
check on the completeness of course outlines
– an otherwise time consuming manual task. It is
interesting to note that a DTD can express constraints
and business rules in a simpler and richer vocabulary
than can be done in a DBMS. For example writing
a trigger to enforce it is more complicated than the
equivalent DTD. DTDs are being superseded by XML
schema but we decided to start with the simplest XML
technology. A simple example would be:

Williams et al. (2000, chapt 2) describes a method for
taking an existing relational database and moving it
to XML The approach decided on was to first build a
relational database for course outlines then map this
structure to a DTD. If we could transform a collection
of Word documents to a collection of XML documents
using this approach the next step would be to build
the style sheets required to present the documents in

a number of different ways. The aim was to automate
the process of extracting XML from a database as
much as possible. The steps involved: Figure 1.
a. analyse a course outline and design a normalised

relational database.
b. build the database.
c. extract the data elements from an existing course

outline and insert these into the database.
d. map the database structure to an XML DTD.
e. create a sample XML document and validate it.

3. RESULTS AND DISCUSSION
Bourett, 2000 emphasises that XML is about data-
centric documents. Analysis of a course outline
revealed a large number of entities (Faculty, School,
Programme etc) and attributes. A course outline is
definitely a data-centric document. The analysis
also raised questions as to the purpose of such a
database. It was decided that it would be a production
database for course outlines, i.e. it would contain only

<?xml version =”1.0”?>

<!— simple course outline DTD —>

<!DOCTYPE courseoutline [

<!ELEMENT courseoutline (heading) >

<!ELEMENT heading (programmename) >

<!ATTLIST heading

 coursecode CDATA #REQUIRED>

<!ELEMENT programmename (#PCDATA)>

]>

<!— and an associated XML document —>

<courseoutline>

<heading coursecode=”BCIT101” >

<programmename>Computer Applications in Business</programmename>

</heading>

</courseoutline>

Figure 1

70

Figure 2
ERD for Course Outlines

71

outlines for the current semester. The normalised
database contained 28 tables (fig 2 ERD for course
outlines).
Much of the data (Faculty, School, Programme,
Semester dates etc) is the same for all, or a group of,
outlines. For a particular outline some data changes
very little from one semester to the next and it could
be that the semester dates are the only changes.
Some of the tables (e.g. Staff, Examdates) are tables
that would be maintained by a Programme Leader or
Head of School. Particular outlines simply reference
these tables. SQL server 2000 can convert the
results of an SQL query into XML (Wahlin, 2001). SQL
server 7 was available so it was decided to build the
database using a script file. Later it would possible
to recreate the database in SQL server 2000.

The next step was to insert the data for some
course outlines. The outlines currently exist as Word
documents. Could a Word document be converted to
a sql script file containing the required SQL INSERT
statements? Well it could but the first one took some
time and manual editing as follows:
a. a script file is a text file. The word document was

first saved as text only.
b. the non-data sections were manually deleted.
c. the data elements (table rows) were arranged

manually so they were on separate lines.
d. a Find/Replace moved it closer.
 i. Find: paragraph mark
 ii. Replace: “)paragraph markINSERT INTO

XXXX VALUES(“
e. Further manual editing was required to produce

a working script file.

The transformation process is tantalisingly
“mechanical” and considering the structural nature
of the Word document, with headers and styles,
it deserves to be automated with a macro. The
script files would make it easy to create and load
the database using SQL server 2000. They also
proved useful when the server machine suffered a
disk crash.

Creating a script file for a second outline was
much less time consuming. Much more of the
Word document could be deleted because all the
common data was already loaded. At this stage it
was realised that it would be easier to create a script
file to load the general tables (Faculty, Programme,
Staff, RPLStatements etc) and it was only the data

specific to each course outline that would need to
be extracted from the Word documents. Maybe this
process could be automated or semi-automated. That
is an area for further research.
If the database was to contain the data for the current
semester and XML documents extracted from it
then an application would be required to maintain
the database. A simple Visual Basic prototype was
developed.

A set of SQL SELECT statements would be required
to extract all the data for a particular course outline.
Obviously the same set of statements would be
required to extract the data prior to reformatting it as
an XML document.

To construct an XML document for a particular course
outline required it to follow the rules for well-formed
XML. The sequence of elements and attributes
would also be validated against the DTD pattern
for a particular course outline. The next step was to
create the DTD. This was done by blindly following
the eleven rules for moving a relational database
to XML (Williams et al, 2000). These are a more
detailed sequence of the simplistic three rules of
Bourrett, 2000 i.e:
a. for each table create an element.
b. for each column create an attribute.
c. for each PK/FK create a child element.

An initial DTD was produced. It contained elements
that mapped to tables and attributes that mapped
to columns. The Williams rules produced ID’s and
IDREFS for PK/FK links as well as some child
elements. I doubt it was a well-formed DTD but it was
a start. It was XML but it felt like a relational model.
The literature suggested that it is easier and better
to use containment (i.e. embedded child elements)
rather than ID or IDREFS (Cover, 2000; La Quey,
2001; Park, 2000).

Ray, 2001 and Mertz, 2001 describe XML as a
hierarchical data structure. Ray describes it as a
tree and as boxes inside boxes (pg 30). He further
suggests that you should strive for a wide bushy
shrub (pg 172).
With the database in one hand, a real course outline
in the other and a shrub in mind a second iteration
of the DTD was constructed and then a sample

72

XML document based on the DTD. Were they well
formed?, i.e. did they follow the rules for XML? Was
the document valid?, i.e. did it match the pattern
described by the DTD?

Internet Explorer (IE) was used as an initial check
of the DTD and document (Lee, 2001). A few end
tags were required and then IE displayed the XML
course outline.

IE is not a strict XML validator. It appears to check
mostly for matching start and end tags and correct
nesting of elements. It did not check for the correct
placement of attributes within the start tag.
It was then checked and validated using the online
validator provided by the Scholarly Technology
Group at Brown University (http://www.stg.brown.

edu/service/XMLvalid/).

Further changes were required to achieve well-
formed and valid success.
As Ray, (2001, pg 169) says developing a DTD is
part art and part science. The first DTD reflected
the influence of Williams et al, 2000 and Bourett,
2000. Mostly tables and columns had been mapped
to elements and attributes. Ray, 2001 suggests
that you should use an element when the content
is more than a few words long and to use attributes
as a parameter or to restrict the value (pg 61).
Consequently Programmename, RPL statements,
Aegrotat statements etc were redefined as elements
and the XML changed accordingly. It made for a more
concise DTD. This was then validated.

4. A DTD FOR COURSE OUT-
LINES

<?xml version =”1.0”?>

<!DOCTYPE courseoutline [

<!ELEMENT courseoutline (heading, thiscourse) >

<!ELEMENT heading EMPTY>

<!ATTLIST heading

 faculty CDATA #REQUIRED

 school CDATA #REQUIRED

 programme CDATA #REQUIRED>

<!ELEMENT thiscourse (prerequisite*, staff+, outcome+,timetable+, textbook*,
materials*, handbook*, assessment+, assessstatement*, resitprocedure*, rpl*,
aegrotat*, lectdiary, labdiary)>

<!ATTLIST thiscourse

 coursecode CDATA #REQUIRED

 coursename CDATA #REQUIRED

 level CDATA #REQUIRED

 credits CDATA #REQUIRED

 semester CDATA #REQUIRED

 year CDATA #REQUIRED

 courseaim CDATA #REQUIRED

 prerequisitecomment CDATA #IMPLIED

 timetabledlectures CDATA #REQUIRED

 timetabledlabs CDATA #REQUIRED

73

 selfdirected CDATA #REQUIRED

 incourseassess CDATA #IMPLIED

 examdate CDATA #REQUIRED>

<!ELEMENT prerequisite EMPTY >

<!ATTLIST prerequisite

 precode CDATA #REQUIRED >

<!ELEMENT staff EMPTY >

<!ATTLIST staff

 type (CASM|PL|CC|HOS) “CASM”

 title CDATA #REQUIRED

 fname CDATA #REQUIRED

 sname CDATA #REQUIRED

 office CDATA #REQUIRED

 xtn CDATA #IMPLIED

 email CDATA #IMPLIED >

<!ELEMENT outcome (#PCDATA) >

<!ATTLIST outcome

 outcomeid ID #REQUIRED >

<!ELEMENT timetable EMPTY >

<!ATTLIST timetable

 lectlab (LEC|LAB) “LEC”

 coursecode CDATA #REQUIRED

 streamcode CDATA #REQUIRED

 dayname CDATA #REQUIRED

 time CDATA #REQUIRED

 room CDATA #REQUIRED >

<!ELEMENT textbook EMPTY >

<!ATTLIST textbook

 category (REC|REQ) “REC”

 author CDATA #REQUIRED

 title CDATA #REQUIRED

 pub CDATA #IMPLIED >

<!ELEMENT materials (#PCDATA) >

<!ELEMENT handbook (#PCDATA) >

<!ELEMENT assessment EMPTY >

<!ATTLIST assessment

 assesstype CDATA #REQUIRED

 assessdesc CDATA #REQUIRED

74

 assessweight CDATA #REQUIRED

 outcomeid IDREFS #REQUIRED

 assessduedate CDATA #REQUIRED

 assesslocation CDATA #IMPLIED >

<!ELEMENT assessstatement (statement*) >

 <!ELEMENT statement (#PCDATA) >

 <!ATTLIST statement order CDATA #REQUIRED >

<!ELEMENT resitprocedure (procedure*) >

<!ELEMENT procedure (#PCDATA) >

<!ELEMENT rpl (rplpara*) >

 <!ELEMENT rplpara (#PCDATA) >

 <!ATTLIST rplpara order CDATA #REQUIRED>

<!ELEMENT aegrotat (aegrotatpara*) >

<!ELEMENT aegrotatpara (#PCDATA) >

<!ATTLIST aegrotatpara

 order CDATA #REQUIRED>

<!ELEMENT lectdiary (diaryline+) >

<!ELEMENT labdiary (diaryline+) >

<!ELEMENT diaryline EMPTY >

<!ATTLIST diaryline

 weekno CDATA #REQUIRED

 semesterdate CDATA #REQUIRED

 topic1 CDATA #IMPLIED

 topic2 CDATA #IMPLIED

 notes CDATA #IMPLIED >

]>

Where to now?
Probably write a VB application that will extract the data from the database and output XML documents. An
alternative would be to create the database using SQL server 2000 and use the XML features to convert

SQL results into XML. Wahlin, 2001 indicates that
this will return data as attributes or as elements but
not some combination. The DTD would need to be
adjusted accordingly.

5. CONCLUSIONS
XML is a meta-language for defining DTDs. An XML
document is a text file containing data and markup.
It is a huge improvement on csf in that it is self-
describing data. The DTD defines a protocol for a

particular document type.

If your data is stored in a RDBMS a DTD can be
defined to map the tables and columns to elements
and attributes as outlined by Williams et al 2000,
Bourrett 2000 but it may not be a “good” DTD
according to the guidelines for the use of elements
and attributes (Ray 2001, Punin 2001). XML has
become the standard for data interchange on the web
and is supported by all the major companies (Punin
2001). An XML document is designed to be a self-

75

contained data set for computer consumption, which
is why it is so pedantic. Good XML uses descriptive
tags and a hierarchical, nested structure. The
automated tools for converting SQL results to XML
documents may well work but they do not necessarily
produce “good” XML. i.e. some produce tags such
as <row…. </row> and <column1> …. </column1>
(Mertz, 2001b).
We have created a DTD for course outlines but in
the light of current discussion on the use of elements
verses attributes it may not be the best or simplest
DTD.

REFERENCES
Banfield J. (2001) “XML goes into orbit”. Computer-

world (New Zealand), 7 May.
Bourret, R. P. (2000) “XML and Databases”. Ac-

cessed May 2001. <http:/www.rpbourret.com/xml/
XMLAndDatabases.htm>

Cover, R. (2000) “SGML/XML: Using elements and
attributes”. Accessed May 2001.

<http://www.oasis-open.org/cover/elementsandattrs.
html>

“Extensible Markup Language (XML) 1.0 (Second
Edition)”. Accessed May 2001.

<http://www.w3.org/TR/REC-xml>
Ray E. T. (2001) “Learning XML 1st edition”. O’Reilly

& Associates.
La Quey, R. E. (2001) “SML: Simplifying XML”.

Accessed May 2001. <http://www.xml.com/lpt/
a/1999/11/sml/index.html>

Lee, W. M. (2001) “Microsoft commits to XML”. XML
Journal 2,3, 10-12.

Mertz, D. (2001a) “Putting XML in context with hier-
archical, relational, and object-oriented models”.
Accessed May 2001.

<http:/www-106.ibm.com/developerworks/xmllibrary/
x-matters8/index.html>.

Mertz, D. (2001b) “DTDs and XML documents from
queries”. Accessed May 2001.

<http:/www-106.ibm.com/developerworks/xmllibrary/
x-matters9.html>.

Park D. (2000) “Minimal XML in a nutshell”. Accessed
May 2001. <http://www.docuserve.com/smldev/
minxmlspec.html>

Punin, J. (2001) “Programming XML in JAVA”. Ac-
cessed May 2001. <http:/www.cs.rpi.edu/~puninj/
XMLJ/classes.html>.

Wahlin D. (2001) “Leveraging SQL Server’s XML
features”. XML Magazine, winter, 1, 5, 30-39.

Williams K., Brundage M., Dengler P., Gabriel J.,
Hoskinson A., Kay M., Maxwell T., Ochoa M.,
Papa J, Vanmane M. (2000) “Professional XML
Databases”. Wrox Press Inc.

