Pictures that change themselves:
graphics programming languages to
facilitate GUI building

Todd Cochrane
School of Information Technology
Wellington Institute of Technology

Petone, NZ
Todd.Cochrane@weltec.ac.nz

Reflection provides facilities in a computer programming language
that specify inspection of the program as it is running. The
“computing has an accurate representation of itself and the
computation is consistent with its representation”(Lorenz,
2003). Reflection can change the execution of a part of the
program by possibly modifying components of the program to
match a condition as the program run. “Reification is the process
in which information is ‘raised’ to a level at which reflection can
occur” (Danvy, 1988).

Purpose built graphics programming languages produced from
the late 1960s, for example “General Purpose Graphics
Language” (Kulsrud, 1968), to the present day, for example
“Flash Action Script” (Macromedia, 2004) while not explicit
about the use of reflection, provide for reflection by some aspect
of the computing undertaken by the running programs. The
degree to which reflection is available determines the level to
which the graphics programming language can be used to describe
the sophisticated changes required by graphical user interfaces.
A graphic language can be described in terms of a set of drawing
objects “drawbles” representing commands that draw pictures.
Instances of drawbles can be composed to represent the drawing
of'apicture. Adding values, expressions, variables and drawbles,
that facilitate reflection allows the graphical language to describe
pictures that change themselves. When these pictures are
“hooked” into input event handlers they then provide a
consistent and succinct representation of displays in the GUI.

Keywords

Pictures, Graphical User Interface, Hypermedia, Programming
Language, Reflection, Object Oriented Programming

1. INTRODUCTION

Anunderstanding of requirements of graphical user
interface (GUI) programming or development tools be-
comes more significant as expression or development
of “interactive’ or “interactivity’ in digital form (media)
becomes more prevalent. Modelling of behaviour at
the GUI can be expressed in the UML (Object Man-
agement Group , 2003) using State Charts , Activity
Diagrams, and swim lane style timing diagrams. A key
feature of the models produced with these notations is
that “behaviour” is reactive, that is a response to some
event that arises, or a response to a condition that oc-
curs as aresult of system or user actions. The behav-
iour, while consistent with the expected behaviour for

234

Paul Lyons
Institute of Information Sciences and Technology
College of Science, Massey University
Palmerson North, NZ

a given action, for example dragging and dropping an
icon onto a trash can in the MacIntosh desktop, will
depend on the state of the running computer program
when the action is taken. The behaviour as a result of
an action taken in a set of states is modelled in an ab-
stract way by UML notations, allowing consideration
of alternative solutions prior to detailed modelling and
coding. When taken to a very high level of refinement
the models describe detailed changes in the graphical
partofthe GUI, for example the highlighting of the trash
can as an item is dragged onto it. The behaviour indi-
cates a change in the display, or precisely the “graphi-
cal display” of the graphical user interface. The state of
the running program prior to this change is also indi-
cated by the “graphical display”. Interaction is indicated
by aseries of changes in the graphical display.

The development of a tool that assists with the pro-
duction of this series of changes in the graphical dis-
play, has lead to the graphical display being treated as
apicture that draws itself; the picture revealing and hiding
some aspects, while adding deleting and updating other
aspects, depending on the behaviour of the computer
program. The part of picture drawn for a given state
can also be thought of as a render of a part of a
hypermedia document, depicting the content and the
set of actions appropriate when in that area of the docu-
ment. A picture that draws itself can also consider the
situation in which it is to be rendered, for example the
picture may be asked to depict a state in one case on a
cell phone and another case a wall display. In these
situations the picture identifies the context and modifies
the render to suit.

Pictures that draw themselves as interaction in the
GUI proceeds must inspect program state and them-
selves in order to determine appropriate adjustments
for the next render. This process of self-inspection and
inspection of the running computer program and the



system context is a “reflective’ process. Lorenz (2003)
describes reflective computing as when “‘computing has
an accurate representation of itself and the computa-
tion is consistent with its representation”. The graphical
display as a picture that draws itself, requires both a
representation of itself and that the computing that oc-
curs is consistent with the representation. Inspection of
itself implies that the picture is represented in a way
that it can raise information to a level from which it can
be inspected. Inclusion of facilities or operators in the
self drawing picture which, either prior to render or
during render allow information to be raised, that is
facilitate “reification” supports the description of self
drawing pictures as “‘reflective”. “Reification is the proc-
ess in which information is ‘raised’ to a level at which
reflection can occur”(Danvy 1988).

The following section examines some graphics and
interaction programming languages and development
tools, identifying operators or structure that assist with
“reification” and “‘reflection”. The third section present
abrief overview of the composable self-drawing pic-
tures under discussion. Introducing the term “drawble”
as an object that is composable and self-drawing. The
fourth section draws some conclusions.

2. REFLECTION AND
REIFICATION

Development and description of graphical display
for interactive or static systems have been undertaken
by many authors and researchers. Here reflection is
described for a sample of these. Categories of reflec-
tion are not described; the sample is presented in
chronological order. The systems in which “interaction”
is a concern of the system are highlighted.

Sutherland (1963) describes SketchPAD in which
graphical constraint macros can be specified. These
macros inspect points on a diagram to determine sub-
sequent adjustments in the their positions. The macros
in SketchPAD setup a level of reflection in the diagram
that allows the system to adjust itself.

Kulsrud (1968) describes categories of commands
or statements required in a “General purpose graphic
language”. These include ““description”, “manipulation”,
“analysis”, “validity checking” and “other””. The “‘other”
includes facilities for construction sub-pictures. In this
system a graphics program can inspect pictures for
topological and regional attributes. Pictures and parts
of pictures can be loaded, copied, erased and rotated.
Picture manipulation can occur as a consequence of
analysis. Analysis changes a value in a variable that can

then be use to determine manipulation of the picture.
The analysis statements inspect pictures with potential
subsequent manipulation of the final render. Analysis
statements combined with manipulation statement pro-
vide alevel of reflection by the program which is useful
for layout by determining appropriate distance rela-
tionships and for rendering by determining for example
if gaps between lines should be snapped to a point.

O’Brien (1975) introduces “Tmage’ a programming
system that includes structured programming constructs
aswell as introducing purpose built graphics commands
such as the currently familiar “lineto”. “Image” also
introduces specification of graphical objects that have
“display generating” sections and “‘action” sections. The
“display generating” sections produce graphics that
depend on variables representing graphical parameters
such as the X or Y of a location. The “display” gener-
ated is based on inspection of parameters used in the
display. The “actions” section provides for handling of
interupts caused by an “identifier strike in the preced-
ing object”. The graphics generating section sets up
parts of the generated display that can be handled by
the action. “Image” reflects on its identifiers for both
the generation of graphic display and the handling of
“interaction”.

Bergeron et al (1978) describe the “Core Graph-
ics System” which focuses on adding purpose built com-
mands, for example “MOVE_ABS TO(X,Y)” and
providing a means of rendering into “Windows”,
“viewports” and “‘viewvolumes” to a standard program-
ming system. The Core system includes a graphics ““seg-
ment”, into which a sequence of “primitives” (com-
mands) is composed. Parameters can be set for a seg-
ment causing adjustments in the display. Interaction in
the Core system is acheived using a queue of events
generated from “virtual devices”, for example “pick”
or “locator”’. Message queues with event handlers are
intrinsic to the Windows and other current operating
systems. Core does not provide any features that as-
sist with reflection; instead it relies on the standard data
types and structures to allow reflection of the state in
the display.

“PICTUREBALM” by Goates ef al (1981) rec-
ognises analogous requirements for LISP and graphics
languages. PICTUREBALM provides composition of
graphics into Models and “clusters”. These are based
on points from which lines, polygons and higher graphi-
cal objects are composed. The features of most inter-
estare described in the following:

235



RERY ashape. deaw (_root.Displayl) ;

Figure 1: A Shape Drawble

1. “Allowing models to contain references to other
models facilitates dynamic displays”,

2.“Allowing procedure calls to be imbedded within
Models provides the user with a mechanism which can
easily effect arbitrary displays, transformations,
parameterized models or other functions that may be
required by a specific application”. PCTUREBALM
presents a perspective similar to the current paper. Pic-
tures that draw themselves are an outcome of thought
into requirements of dynamic graphics. Interactive sys-
tems are inherently dynamic.

Van de Bos (1988) presents “Abstract Interation
Tools” (AIT) . AIT are components of a User Inter-
face Management System that are intended to be added
to an exisiting system. These tools relate user actions
to a set of manipulations of the display. They have an
action area and in a manner similar to “Image” the ac-
tions cause changes in the display. AI'Ts are specified in
terms of relations on virtual devices, for example a “pick™
device. These can be reflective in the sense that the
actions are determined by inspection of an object of
interest. They are abstract because the do not need to
be specific, an example AIT given is “DRAG” which
acts on a “viewport” rather than a specific object.

Bottoni (2002) introduces ““Virtual Interaction Ma-
chines” that provide “multilevel” modelling and design
of interactive systems. The ““Virtual Interaction Machine”
is derived based on a “3-D Interaction Modelling
Space”, with “activity language”, “pictorial language”
and “programming language” dimensions. ““Virtual In-
teraction Machines” are derived for different levels of
abstraction. This approach is instrinsically reflective,
with higher level machines having to inspect lower level
machines to determine appropriate changes in the sys-
tem.

Macromedia (2004) presents in its product “‘Flash”
aprograming system that allows event handlers to be
attached to “Movie Clips”. The Flash editor “‘com-

23 6piles” to a file format called Flash “‘shockwave’’(swf)

file, which is a “tag” based binary file. Tags in a
“shockwave” file are composable, through reference
to previously defined tags. Tags can be chunks of ex-
ecutable code which create and manipulate
“MovieClips’ and their content. The “‘shockwave’ file
is interpreted by the “flash” player. This system pro-
vides many opportunities for reflection. MovieClips
inspect themselves as a result of events , values are
changed in variables as a consequence of changes in
text fields. These changes cause events that can be han-
dled. The handlers can then be used to adjust the dis-
play as a consequence of reflection.

The World Wide Web Consortium (W3C, 2004)
defines standards for web based markup and informa-
tion exchange. The W3C Document Object Model
(DOM) provides an object model that facilitates the
construction of self modifying documents. The docu-
ment object model provides a representation of the
document which, when modified, affects the comput-
ing undertaken by the document as it is rendered. Ren-
dering is called when a change is made to the DOM.
Tags of amarkup language used to describe the layout
and content of the web document are represented in
the DOM as instances of object classes called “nodes”.
Each node can contain a list of ““child-nodes”, and can
access “‘sibling” and parent nodes. Nodes are also
thought of as “elements” of the document. Each “ele-
ment” can also be accessed using an identifier. The
DOM is available to scripts that are themselves part of
the document’s elements. A “script tag” contains code
that can inspect and modify elements of the document.
Provision the DOM and its manipulation is an example
of reification and reflection in this system. “Reflection”
has been provided to meet interactive GUI require-
ments, for example display on different platforms and
responding to user input.

The World Wide Web Consortium also provides a
“Scalable Vector Graphics” (SVG) language specifi-
cation for graphics to be used in the web. SVG in-
cludes the facilities for drawing complex shapes to be
displayed in a web browser. An SVG with DOM like
scripts provides a very powerful mechanism for deliv-
ering sophisticated graphics on the web. This solution
alsouses “reflection” as ameans to meet these require-
ments.

Reflection has been inherent or in the background
ofanumber of graphical programming systems. Ithas
not been made explicit. In the following a system is
described that uses composable graphic primitive ob-
jects making pictures that change themselves.



Figures 2 and 3: A Picture that changes itself
depending on the value of its right most handle

3. DRAWBLES

Pictures that draw themselves are expressed as a
composition of instances of “‘draw-able” objects, called
“Drawbles”. Drawbles have been defined in
Macromedia’s “Flash Action Script” and in Borland’s
Delphi. See Figure 1 for an example drawble shape
written in Flash Action Script . Drawbles were first
defined as wrappers around available available draw-
ing commands, for example “lineto”.

Sequences of commands were stored so that ad-
justments to the shapes or figures they produced could
be adjusted in the most flexible manner. The system
under construction requires very smooth and fine in-
teractive adjustment of shapes, clean fading in and out,
aswell as adjustments to scale and rotation. Storing
graphics commands with references to their param-
eters allows fine adjustment to be made to a shape and
allows for editing and updating of part of a shape. Each
object manages itself'and can have an object that fol-
lowsit.

To facilitate rotation and scaling, transformational
objects were added to the sequence. All points that
are parameters of subsequent drawbles in the sequence
are scaled or rotated by a transformation drawble. A
“conditional’”” drawble was introduced to allow for parts
of the sequence to be hidden and revealed under a
condition. This might also affect scaling and and rota-
tion of the rest of the display.

The addition of a conditional drawble moved the
drawble from a static display to a dynamic display. At
this point drawbles become reflective. The conditional
drawble also introduces a “scope” problem. The
drawbles that are introduced by the condition are
thought of being in a block. Transformations introduced
inablock affect the rest of the drawbles while the trans-
formation drawble is present.

Additional drawbles are to be added that manipu-
late drawbles in the sequence:

B a Createlnsert drawble - creates and inserts a
drawble after itself,

B aDecleteNext drawble - deletes the next drawble
in the sequence,

B aDeleteAll drawble - deletes all the drawbles
that follow

B aCreateReplace drawble - creates a drawble
and replaces the next one.

Adding a drawble that assigns a value to a variable
provides the facility for the drawble sequence (picture)
to manipulate values on which it is based. A drawble
that provides iteration could also be added to generate
a sequence of drawing or patterns.

S. CONCLUSION

By storing a picture as a sequence of composable
drawing command object instances, that provide self-
inspection and adjustment, “reflection”, the opportu-
nity for expressing dynamic displays is increased. GUIs
are inherently dynamic. Treating the graphic display as
“apicture that draws itself” provides an approach that
meets GUI development requirements.

REFERENCES

Bergeron, R. D., Bono, P. R, ,Foley , J. D. 1978 “Graphics
Programming Using the CORE System” in ACM
Computing Surveys 1978, p 389.

Bottoni, P, Costabile, M. F,, Fogli,D., Mussio, P,, 2001 , “Multilevel
Visual Interactive Systems”, IEEE 2001 Symposium on
Human Centric Computing Languages and
Environments(HCC’01), September 05-07.Stresa Italy, 256.

Danvy, O., MALMKJAER K., 1988 “Intensions and Extensions
in an Reflective Tower”,Proceedings of the 1988 ACM
conference on LISP and functional programming
,Snowbird, Utah, United States , ACM, pp 327-341.

Goates, G B., Gris, M. L.,Herron, G J. 1980, “PICTUREBALM: A
LISP-BASEDGRAPHICSLANGUAGEWITHFLEXIBLE
SYNTAXANDHIERARCHICALDATASTRUCTURE”,
ACM SIGGRAPH 1980,p93.

Kulsrud, H. E., 1968, “A General Purpose Graphic Langauge”,
Commsofthe ACM 11(4):247-254

Lorenz, D. H., Vlissides, J., 2003, “Pluggable Reflection:
Decoupling Meta-Interface and Implementation”,
Proceedings of the 25th international conference on
Software engineering, Portland, Oregon, IEEE 2003:34.

Macromedia, 2004, “Macromedia Flash MX 2004 - ActionScript”.

O’Brien, C.D.,Brown,H. G 1975 “IMAGE : alanguage for the
Interactive Manipulation of a Graphics Environment”, in
ACM SigGraph 1975, p53.

Object Management Group, 2003 “OMG Unified Modelling
Language Specification - March 2003 Version 1.5 formal/
03-03-01”, Object Management Group, http://
www.omg.org/docs/formal/03-03-04.pdf (18 June 2004.)

Sutherland, I. E., 1963, “SKETCHPAD - AMAN-MACHINE
GRAPHICAL COMMUNICATON SYSTEM”, PhD
Thesis, MIT, Cambridge, USA.

Van Den Bos, J., 1988 “Abstract Interaction Tools: A Language
for User Interface Management Systems”, ACM Trans
on Programming Languages and Systems, 10(2):215

W3C - World Wide Web Consortium , 2004, www.w3c.0rg237

accessed June 2004.



