
264

Implementing Relationship
Constraints in OO Programming

Languages

Rigorously defined object relationships are crucial to the
successful expression of a conceptual design idea in a
programming language. Conceptual relationships expressed by
various forms of aggregation and association form the
cornerstones of object-oriented systems. These relationships
must be unambiguously articulated by the design notation and
clearly implemented in a programming language. Object-oriented
programming languages have neglected to provide support for
implementing aggregate and associative relationships.
Additionally, UML contains ambiguities that can only be
resolved using non-diagrammatic extensions such as the Object
Constraint Language (OCL). This paper examines the expressive
deficiencies in the diagrammatic representations within UML
when confronted by the semantic implications of many different
types of aggregate and associative relationships. The authors
propose extensions to object-oriented programming languages
to accurately reflect the semantics of design relationships
expressed in UML. A novel Java implementation of aggregation
and association relationships that is used within a Java visual
development environment is discussed. These language
extensions ensure that programming language implementations
of object relationships are checked at compile-time and enforced
at run-time.

Keywords
object-oriented, programming languages, Java, software design,
teaching programming, BlueJ

1. INTRODUCTION
Rigorously defined object relationships are es-

sential for the creation of robust software and for-
mal verification of object-oriented systems. Con-
ceptual relationships expressed by various kinds of
aggregation and association form the cornerstones
of object-oriented systems. The semantics of these
object relationships must be unambiguously articu-
lated by the design notation and clearly implemented
in a programming language. Unfortunately, object-
oriented programming languages have neglected to
provide support for the implementation of aggre-
gate and associative relationships. This situation is
aggravated by UML, which does not clearly and

unambiguously define the semantics of different types
of object relationships. This paper examines differ-
ent types of object relationships and proposes a
programming language construct to correctly imple-
ment whole-part relationships. The authors discuss
the implementation of constraints to enforce object
relationship semantics within the BlueJ Java devel-
opment environment (Barnes & Kolling, 2003) by
making use of the BlueJ extension mechanism. Pro-
gramming students working within BlueJ are given
the illusion that the compiler and Java virtual ma-
chine are enforcing the meaning of object relation-
ships.

2. OBJECT-ORIENTED
RELATIONSHIP

SEMANTICS
Whole-part and associative relationships in UML

do not support the many different types of relation-
ships covered by relationship theory (Winston,
Chaffin & Hermann, 1987). Relationships that are
supported by UML are not clearly defined in the
UML specification (UML v1.5, 2003). A model can
be viewed as a formal specification for the software
implementation. Development of this approach
within UML has lead to the OCL (Object Constraint
Language), which is a formal language “that allows
additional semantics to be added to UML models
which, with the remaining UML elements, can either
not be expressed at all or only insufficiently”
(Oestereich, 2002). Using OCL, we can express
precisely what we mean by a particular relationship,
and also indicate which classes are responsible for
maintaining the constraints.

Andrew Eales Rhys Owen

Wellington Institute of Technology
Petone, Wellington, NZ

andrew.eales@weltec.ac.nz

265

 2.1 Whole-part relationships
A wide variety of whole-part relationships exist.

Odell (Odell, 1994) discusses the subtle semantic
differences of these relationships by applying the
work of Winston (Winston, 1987) to object orien-
tation. Aggregation, denoted by a white diamond
and composition, denoted by a black diamond are
often confused in the literature. Barbier (Barbier &
Henderson-Sellers, 1999) and Saksena (Saksena,
France & Larrondo-Petrie, 1998) discussed the in-
terpretation of aggregate and composite relationships
in UML. The most common whole-part relation-
ship consists of objects that are components with
well-defined relationships to each other and the
whole. Odell refers to this aggregate relationship as
component-integral object composition, which cor-
responds to composite aggregation in UML (denoted
by a black diamond). Programming languages only
support implementations using references or in-
stances that are topologically included within a class
definition. Unfortunately, topological inclusion and
attachment do not guarantee composition. Some-
thing being “inside” something does not necessarily
imply a composite relationship; a person inside a
car is not a part of the car. Neither does attachment
of one object to another guarantee composition. For
example, toes are attached to feet and are also parts
of feet; however, while rings are attached to fingers,
they are logically not parts of fingers. The UML 1.5
specification provides the following definition of com-
position:

“Composite aggregation is a strong form
of aggregation, which requires that a part
instance be included in at most one compos-
ite at a time and that the composite object
has sole responsibility for the disposition of
its parts. The multiplicity of the aggregate
end may not exceed one (it is unshared).”
(UML v1.5, 1998)
Composition (composite aggregation) is thus

equivalent to strong aggregation, implying a coinci-
dent lifetime between the whole and its parts. This
definition does not prohibit a part existing without a

corresponding whole (or vice-versa), nor does it
prohibit the parts being used outside of the whole.
For example, an aircraft has the sole responsibility
for the disposition of its wings. The wings belong to
the aircraft and should not be manipulated from out-
side of the aircraft. However, a wing can be created
outside of an aircraft and attached to the aircraft
after creating the aircraft, or, a wing can be detached
from an aircraft and destroyed after the aircraft is
destroyed. The UML specification is ambiguous and
does not provide answers to the many questions that
arise when attempting to rigorously define a rela-
tionship. A more rigorous semantics of composition
suggested by Henderson-Sellers (Henderson-Sell-
ers & Barbier, 1999) requires a minimum multiplic-
ity of parts as well as unshareability amongst parts.
A UML design can clarify a relationship using OCL
statements such as shown in Figure 1.

The cardinality of the part must be exactly four,
with Car objects responsible for managing the
cardinality of Wheel instances via the cardinality of
the set of wheels stored within class Car. Car ob-
jects are also responsible for ensuring that the set of
wheels only contains objects of type Wheel. The
set implies that the programming language implemen-
tation stores Wheel instances as a collection, and
not as four separate references. Additionally, each
Wheel instance must be attached to a Car by means
of the reference in class Wheel.

2.2 Associative Relationships
Associative relationships are relationships that

cannot be defined by a composite relationship if we
accept the constraints of coincident lifetime and
unshareability. Association clearly differs from com-
position. Unfortunately, the term “composition” is
used indiscriminately within the object-oriented com-
munity to refer to any object relationship that is not
inheritance. This confusion of different relationship
semantics arises from programming language imple-
mentations of associative and composite relation-
ships that utilize topological inclusion as discussed
in section 2.1. Aggregate relationships encourage

context Car inv Wheels4: self.wheels->size() = 4
context Car inv SafeWheels: self.wheels->forAll(oclIsKindOf (Wheel))
context Wheel inv Car1: self.theCar->notEmpty()

 Figure 1. A composite relationship in UML with OCL annotations.

266

interaction with the whole while associative relation-
ships place objects within a co-operative relation-
ship. The relationships differ in that associations need
not have a minimum or fixed cardinality, need not
implement unshareability unless required to do so,
and do not require coincident lifetimes. Consider the
relationships where a person may own an arbitrary
(possibly zero) number of items as a shared owner,
while a theatre patron has a fixed one-to-one rela-
tionship where the relationship defines the meaning
of “theatre patron”.

3. VERIFYING OBJECT-
ORIENTED

RELATIONSHIPS
Direct programming language support for object

relationships would enable fundamental relationship
constraints to be enforced by the compiler and run-
time system. If whole-part relationships are defined
within the programming language syntax, the com-
mon manipulation of parts by the whole becomes
possible using a programming language construct.
As an example, consider the animation of a car im-
plemented using programming language extensions
that support whole-part relationships:
class Wheel partOf Car
{ void Rotate (float factor)
 { rotation *= factor;
 }
 float rotation;
}
class Car hasPart Wheel (4)
{ Car ()
 { for (int i=0; i<4; i++)
 wheels.add (new Wheel
(this));
 }
 void Accelerate (float factor)
 { forAllParts
 { Rotate (factor);
 }
 }
 Container carWheels;
}

Listing 1. Proposed programming
language extensions.

The compiler can check that both ends of the
relationship are correctly declared and that the
cardinality of the part is observed when creating the
whole. The parts can also be correctly manipulated
via the whole using the forAllParts statement in list-
ing one. These extensions cannot be directly added
to the Java language but can be indirectly imple-

mented using facilities provided by the BlueJ exten-
sion API.

3.1 Implementing Relationships in
BlueJ

BlueJ (BlueJ, 2004) is a visual development en-
vironment for Java that supports rudimentary class
diagrams that indicate class relationships. This envi-
ronment is widely used to teach novice Java pro-
grammers. All relationships that are not inheritance
relationships are simply indicated as referential re-
lationships by a connecting dotted line between
classes. The authors contend that BlueJ does not go
far enough in emphasizing high-level object relation-
ships within an object-oriented design and should at
a minimum strive to differentiate between compos-
ite aggregate and associative relationships.

The BlueJ extension mechanism allows function-
ality to be added to the BlueJ IDE using Java code
and the provided extension API. Unfortunately, the
extension mechanism does not provide access to
the class diagrams, preventing our extension from
adding UML relationship diagrams to the existing
class diagrams. As an extension can access the
source code of a BlueJ project, our extension can
parse the source code at compile-time, perform static
checks, and then generate Java code that implements
run-time checks on object instances.

3.1.1 Implementing Static Constraints
Relationship semantics can be added to Java

code as comments following class declarations in
the source code:
class Car // hasPart Wheel(4)
 …
class Wheel // partOf Car
 …
class Driver // associates with Car

Static analysis of source code to ensure consist-
ent composite relationships and associations is trivial
to implement. At compile-time our extension parses
the source code, examining the specified relation-
ships following class declarations. Each part must
have a matching whole and vice-versa, and the part
cardinality must be specified. A similar procedure is
followed for associations where the relationship can
be unidirectional or bi-directional. When an infringe-
ment occurs, a message box displays the error giv-
ing the student the illusion that the compiler has
flagged the error. Ensuring that semantic declara-

267

tions are not violated at run-time is much more diffi-
cult to achieve.

3.1.2 Implementing Dynamic Constraints
Ensuring that constraints are not violated during

program execution requires three different
validations. Minimum and maximum relationship
cardinalities must be ensured, while composite rela-
tionships require enforcement of coincident lifetimes
and unshareability. Our current model makes use of
existing object wrappers provided by the BlueJ run-
time system. This approach is extremely difficult to
implement, as we must attempt to build a graph that
tracks all object instances and references between
objects. A better approach is to attempt to integrate
executing Java code that expresses constraints with
object instances created on the BlueJ object work-
bench. An appropriate methodology to express con-
straints within an object-oriented programming lan-
guage is the Design by Contract (DBC) methodol-
ogy proposed by Meyer (Meyer, 1988) for the Eif-
fel programming language. Design by Contract views
the relationship between a class and its clients as a
formal agreement, expressing each party’s rights and
obligations as pre-conditions, post-conditions and
class invariants expressed as assertions. Java intro-
duced support for assertions in Java 1.4 (Sun
Microsystems, 2002). Another way of expressing
constraints in Java is to use a third-party DBC tool
specifically designed for Java. There are a number
of candidates, (iContract, Jass, jContractor and oth-
ers) but a significant one for the future, in our opin-
ion is JML (Java Modeling Language) described by
Leavens (Leavens & Cheon, 2004). JML is tightly
coupled to the Java compiler, providing the best in-
tegration with the Java code used in a BlueJ exten-
sion.

4. CONCLUSIONS
Clarification of the semantics of relationships ex-

pressed in UML would benefit designers and allow
extensions expressing UML constructs to be added
to programming languages. Attempts should be made
to clarify UML specifications and not rely on OCL
annotations to provide semantic clarity. By using the
BlueJ extension mechanisms in conjunction with run-
time Java tools that support design by contract, pro-
gramming students are made aware of the semantic
differences between composite and associative re-
lationships. An extension to the BlueJ environment

simulates programming language extensions using
embedded comments. Classes within BlueJ are re-
quired to declare their relationships to other classes
at compile time, and to enforce these relationships
during program execution. Deficiencies in the cur-
rent UML specification have led us to restrict our
focus to composite aggregate and simple associa-
tive relationships. The authors believe that if the BlueJ
approach to programming, which emphasizes high-
level object relationships is adopted, a clear distinc-
tion between different types of relationships is de-
sirable. We continue to examine different strategies
for the efficient checking of constraints during pro-
gram execution.

REFERENCES
Barnes, D.J. and Kölling, M. (2003) Objects First with

Java - A Practical Introduction using BlueJ.
Prentice Hall - Pearson Education.

Barbier, F. and Henderson-Sellers, B. (1999) Object
Metamodelling of the Whole-Part Relationship.
In (Mingins,C., Meyer,B. Eds.) Proceedings
TOOLS 32, IEEE Computer Society Press, Los
Alamitos, California.

BlueJ (2004) <http://www.bluej.org>
Henderson-Sellers, B. and F. Barbier, F. (1999) Black

and White Diamonds Proceedings of the 2nd IEEE
conference on UML, pp.550-565.

Leavens, G. and Cheon, Y. (2004) Design by Contract
with JML. <http://www.cs.iastate.edu/~leavens/
JML/index.shtml>

Meyer, B. (1987) Object-Oriented Software
Construction, 2nd edn. Prentice-Hall.

Odell, J.J. (1994) Six Different Kinds of Composition.
Journal Of Object-Oriented Programming, 5(8).

Oestereich, E. (2003) Developing Software with UML,
2nd edn. Addison-Wesley.

Saksena, M., France, R.B. and Larrondo-Petrie, M.M.
(1998) A Characterization of Aggregation, p.363.
Proceedings of the 5th International Conference on
OO Information Systems.

Sun Microsystems (2002) Programming with Assertions.
<http://java.sun.com/j2se/1.4.2/docs/guide/lang/
assert.html>

UML Specification v1.5. (2003) 3-48, p.481. <http://
www.omg.org>

Winston, M.E., Chaffin, R. and Hermann, D. (1987) A
Taxonomy of Whole-Part Relations. Cognitive
Science 11, pp.417-444.

