Easy and Effective Streaming for
Introductory Programming Courses

Patricia Haden

Joy Gasson

School of IT and
Electrotechnology
Otago Polytechnic

Dunedin, NZ
phaden@tekotago.ac.nz

The benefits of small-group hands-on teaching are well known
in computer programming education. Unfortunately, with a
heterogeneous student population, group members may work
at very different speeds, and prefer very different levels of
tutor interaction. This makes practical sessions cumbersome
for the tutor and frustrating for the students. A more productive
educational atmosphere can be achieved if students are placed
in groups based on their abilities.

At Otago Polytechnic we recently trialled a simple method for
streaming students into one of three laboratory groups for a
first-year programming course. During the first class session,
students were given a short quiz that emphasised their
understanding of basic conceptual issues in program structure:
flow of control, data operations and data assignment. On the
basis of their mark on this quiz, they were assigned to one of
three lab groups. Compared to previous instantiations of the
course, this streaming improved the character of practical
teaching for both students and tutors, demonstrating that a
very simple assessment tool can be used to greatly enhance the
educational experience. The strong correlation between
performance on the streaming quiz and eventual course mark
also highlights the importance of an understanding of basic
structural principles to a student’s ability to learn more complex
programming concepts.

1. INTRODUCTION

The Bachelor of Information Technology at
Otago Polytechnic is distinguished from other local
IT programs by its focus on practical training and its
commitment to individual education. To this end, the
BIT emphasises laboratory practicals and places a
strict limit on class size. Our practical teaching ses-
sions are limited to 17 students, producing an ex-
tremely low student/teacher ratio, and allowing maxi-
mum one-on-one interaction between student and
tutor.

Unfortunately, providing this level of individual
attention is not always easy. Different students have
different abilities and educational needs. This is par-
ticularly true of the BIT’’s student population, which

280

ranges from 17-year-old school leavers to middle-
aged tradesmen training for new careers. Tailoring
instruction to accommodate such a wide range of
ability, previous experience, learning style and edu-
cational goals can be nightmarish. This problem has
been especially evident in our computer program-
ming courses, where some students are experienced
hobbyist programmers, and some are facing their
first attempt at giving instructions to a computer.
Mixing these students in the same small practical is
good for neither group — the less experienced stu-
dents are intimidated and the more experienced stu-
dents are bored. It is also extremely difficult fora
single tutor to provide optimal support to all stu-
dents when they are moving at such different speeds.

In a recent offering of our second semester pro-
gramming course — Introduction to Object-Oriented
Programming — we decided to separate the students
into streams based on their work pace and comfort
with the computing environment. We canvassed our
introductory programming tutors to get their impres-
sions of what specific abilities distinguish strong and
weak beginning programmers. Based on their ex-
perience, we identified three major programming
concepts that “good” students have mastered, and
“poor” students have not. In increasing order of dif-
ficulty, they are:

1. Understanding of the role of variables as data
storage elements.

2. Understanding basic flow of control, specifi-
cally branching and looping.

3. Understanding the ““step-by-step” nature of
computer algorithms. That is, the need to specify
everything the computer must do, in the correct or-
der.



Note that there was no mention of any compara-
tively esoteric skills such as maths ability, logical
thinking, verbal fluency, or any of the higher order
intellectual functions that have sometimes been
linked to successful learning of programming skills
(Hartman, 1989). The impression of these experi-
enced tutors is that successful programming students
are those who have a firm grasp of the basic syntac-
tic and structural mechanics of programming.

We constructed a short quiz whose items were
designed to assess student ability on the simple
metrics identified above. This quiz was administered
to all students during the first teaching session of the
Introduction to Object-Oriented Programming
course. The quizzes were marked, and students
were divided into upper, middle and lower groups
based on their quiz result'. The students were as-
signed to laboratory streams based on this group-
ing. Students were told that different people have
different levels of programming experience and that
they would be assigned to the stream where we
believed they would be most comfortable. It was
made clear that this assignment was only a recom-
mendation; students were not required to attend a
particular stream if their schedules made it difficult
to do so. However, the large majority of students
voluntarily attended the recommended stream.

(Note that group sizes were not equal, as there
were clear breaks in the distribution of quiz results
between the top, middle and bottom groups.)

2. STREAMING QUIZ
CONTENTS

Items for the streaming quiz were designed to
assess a student’s mastery of the basic program-
ming concepts described above. An example prob-
lem for each category is given below:

1. Understanding of the role of variables as data
storage elements.

In the code skeleton shown below, add the state-
ments necessary to assign a value of 100 to the inte-
ger variable x, and a value of 25 to the 5" element in
the array NumArray.

procedur e AssignVal ues;
var
X: integer;
NumArray: array[1l..10] of
begi n
end;

i nt eger;

2. Understanding basic flow of control, specifi-
cally branching and looping.

After the following statements are executed, what
is the value of'the integer variable x?

x: = 10;

if x >5 then
X:= X*2

el se

X:= X - b5;

3. Understanding the “step-by-step” nature of
computer algorithms

Assume that a value has been assigned to each
of the ten elements of a global array of integers
named NumArray.

a. Write a procedure that adds up all the ele-
ments in the array, and displays the sum.

b. Write a function that counts the number of
times the numeral 5 occurs in the array, and returns
the count.

The quiz comprised four simple questions, and
was designed to be completed easily in the allotted
time.

3. STREAMING QUIZ
PERFORMANCE:

All students in the Introduction to Object-Ori-
ented Programming course had recently completed,
and passed, a 12-week course in Basic Pascal. All
the material covered in the streaming quiz was taught
in the Pascal course. One would therefore have ex-
pected uniformly high performance. Unfortunately,
performance ranged from almost perfect to extremely
poor. This is consistent with our previous experi-
ence teaching this course: although students come
to the course with ostensibly the same amount of
programming experience, there is considerable vari-
ation in actual skill level.

The pattern of performance on quiz items was as
expected. Most students were able to do simple
assignment, while some had difficulty with the syn-
tax for accessing an array element. A number of stu-
dents had problems with flow of control, and more
than half of the students made errors when required
to construct a full algorithm, as in the third problem

281



r

/

==Top
/ == Middle

=& Bottom

Frequency
w IS
\
/

0

AR
11 /

i %
A+ A A- B+

/™ /
Ao

‘_

Final Course Mark

Figure 1: Distribution of Final Course Mark by Streaming Group

shown above. While discouraging, this result is in
keeping with the poor performance of beginning
programmers described in the literature (cf. Adams,
1996; Barr, Holden, Phillips & Greening,1999;
Decker & Hirshfield, 1994).

4. SUBJECTIVE IMPACT
OF STREAMING

Students were assigned to streams based on the
results of the streaming quiz. All streams worked
from the same laboratory manual, which contained
content material and programming exercises for each
of the 22 programming lab sessions.

It was intended that the stream containing the high
performing students would move at a fast pace, with
minimal tutor direction and maximal independent
work. When necessary, the tutor for this stream
would suggest extensions to the exercises in the labo-
ratory manual to provide further challenge for the
high-performing students. The stream containing the
low performing students would move slowly, with
more tutor-directed group work. The middle stream
would move at an intermediate pace, with interme-
diate tutor support. Both tutors were experienced
programming tutors and had used the laboratory
materials in a previous offering of the course.

Of primary interest to us was the impact of
streaming on the students’ enjoyment of the labora-
tory experience. Previous offerings of the course had

282

produced anecdotal evidence of dissatisfaction from
both fast and slow students. The streaming approach
eliminated virtually all these complaints. Most im-
portant, students in the slower streams reported sat-
isfaction at being able to move at a comfortable,
non-threatening pace, and receive extra tutor sup-
port.

Both tutors found the management of the
streamed laboratory groups easier than the manage-
ment of the more heterogeneous groups of past in-
stantiations of the course. For example, in the slower
moving sessions, the tutor had the option of demon-
strating a programming exercise on her own com-
puter, with the screen displayed to the students via
data projector, and the whole class working through
the exercise as a group. In previous classes where
students were working at different paces, this syn-
chrony was impossible.

5. RELATIONSHIP
BETWEEN STREAMING
ASSIGNMENT AND
COURSE PERFORMANCE

A student who enters an introductory program-
ming course as a strong beginning programmer is
likely to do better in that course than a student who
enters with weaker programming skills. While
streaming can make the course experience more
exciting for the strong student and less stressful for



the weaker student, it is unlikely to have a significant
effect on the general ability of the student. This was
demonstrated by an analysis of the relationship be-
tween initial stream assignment and final mark in the
course. Figure 1 shows the distribution of final mark
by streaming group.

As shown, students who were placed in the fast
group by virtue of their streaming quiz performance
generally earned marks in the A to B+ range. No
student in this group failed the course. Students who
were placed in the middle stream generally earned
marks in the B+ to C-range. Six of the 16 students
in this group failed the course. Sadly, only one of the
seven students in the bottom streaming group was
able to pass the course. Thus programming ability
after only 12 weeks of introductory Pascal was an
excellent predictor of performance in a second,
more advanced programming course.

6. CONCLUSION

It is tempting to look at the pattern of marks de-
scribed above and feel despair for the student who
does not immediately show facility with program-
ming. It seems that students who did not have a
strong grasp of basic programming principles (as
measured by the streaming quiz) after their first
course were unable to perform to a high standard in
their second course, even with the added tutor sup-
port provided to the middle and bottom stream
groups. While there is no doubt a confounding influ-
ence of general student ability, it seems as though
with programming, if you don’t “get it” right away,
you may never do so.

We prefer to look at these results as a guide to
the proper emphasis in our early programming
courses. High performance on the streaming quiz
did not require any remarkable intellectual prow-
ess, mathematical skill or logical analysis. It simply
required that the student have mastery of the basic
programming principles of assignment, flow of con-

trol and algorithmic thinking. Tutors generally find
first programming courses, with their emphasis on
syntax and simple algorithmic thinking, less interest-
ing to teach than more advanced courses that incor-
porate high level design concepts and creative algo-
rithmic approaches. However, the results discussed
here demonstrate that the importance of these basic
concepts must not be underestimated, and their
teaching must not be neglected. The student who is
short-changed in acquisition of basic programming
logic is at a disadvantage, while the student who truly
owns the logical foundations of programming will
be poised to excel in whatever programming envi-
ronment he or she may encounter in the future.

References

Adams, J., Object-Centered Design: A Five-Phase
Introduction To Object-Oriented Programming
In CS1-2, SIGCSE 1996

Barr,M., Holden,S., Phillips,., Greening,T., An
Exploration of Novice Programming Errors in
an Object-Oriented Environment, SIGSCE
Bulletin, pp. 42-46, 31,4,December, 1999.

Decker, R. & Hirshfield, S. The Top 10 Reasons
Why Object-Oriented Programming Can’t Be
Taught in CS!, SIGCSE 94

Hartman, J. D. Writing To Learn And Communicate
In A Data Structures Course. ACM, 2, 32-
36, 1989.

283



