Development of a custom software
regression-testing tool: Ensuring a robust

system for the management of electricity energy market
delivery.

Dr. Tim D. Hunt

The Waikato Institute of Technology,
Hamilton,
New Zealand.
tim.hunt@wintec.ac.nz

The development of a software tool for performing automated
regression testing of a critical information and control system is
described. The tool was written using Borland Delphi and
made extensive use of predefined classes. The software uses
ADO to input data from an MSExcel spreadsheet, links to a
DLL (the application under test) to perform the tests and
outputs results to text files. The software was designed using
Rapid Application Development (RAD) technologies between
client and developer, making use of frequent demonstrations of
implemented functions to verify design progress. The client
has used the software to successfully confirm the stability of
the product, to scope changes and ensure the robustness of
their deliverable system.

1. INTRODUCTION

The importance of adequately testing software
has been recognised since software was first writ-
ten, yet the consumer software market still produces
products with a large number of defects resulting in
apoor end user experience. When software is used
in critical situations, the goal is to achieve software
with near zero defects. Software regression testing
is one tool that the software engineer has to facili-
tate achieving this goal.

There are a large number of software testing tools
available (for example see the list at: http://
www.aptest.com/resources.html) however finding a
tool that matches specific testing requirements can
be a time consuming and costly process making the
implementation of an off the self useful testing sys-
tem prohibitive to small and medium sized software
development companies. Further, when the system
under test has no user interface and runs on a single
platform it can be more cost effective to develop a
custom testing environment. This paper describes
the development of a custom regression testing ap-
plication (the RilTester) for a Hamilton company,
Realtime Information Limited (http://

104

Peter Ensor
Realtime Information Limited,
Hamilton, New Zealand.
peter.ensor@realtime.co.nz

www.realtime.co.nz) referred to in this paper as ‘the
client’. This company provides customized software
to the electrical generation and transmission indus-

try.
1.1 Software Testing Theory

Testing practice is often described as either
‘Functional’ where the software is seen as a ‘black
box’ or as ‘Structural’ also known as white box test-
ing. Black box testing takes the approach that only
the inputs and outputs of the code are tested whereas
white box testing uses knowledge of the internal code
to design tests that make sure every code pathway
is tested. In practice both approaches should be
used as they have complementary qualities. A good
review of traditional software testing practice is given
by Jorgensen (1995).

The ‘traditional’ testing approach often fails as a
result of external commercial pressures reducing the
time allocated for testing when the design and cod-
ing stages take longer than expected. The advent of
Xtreme programming, XP, see an introduction by
Beck (1999) has added a new impetus to software
testing, with testing taking a central role in the soft-
ware development process. The testing regime in-
tegrated into the Xtreme programming methodol-
ogy brings testing to the front of the coding process,
as apposed to the traditional approach where tests
are devised and performed after the software has
been written.

Continuous design, Shore (2004), also known
as evolutionary or emergent design is a term used to
describe a method of software development that
doesn’t try to guess future functional requirements
of'a piece of software, but instead implements each

feature as it arises and expects to change the design
as new features are requested of the software. Itis
obvious that when this approach is applied, it is im-
portant to retest functions that previously passed
tests — this testing approach is known as ‘Regres-
sion Testing’.

Regression Testing involves the testing of soft-
ware after a change has been made, to ensure that
this change has not had unforeseen implications on
previously working features. For example, suppose
a program performs the functions: add(a,b) and
multiply(a,b); ifthese functions have been imple-
mented and tested before a third function
subtract(a,b) is implemented, good practice requires
to not only confirm that the new function
subtract(a,b) works but that the other two functions
continue to work.

Software that contains a large number of func-
tions that need to be tested under a large number of
conditions can quickly require many tests to ensure
that all functions continue to perform as expected.
Manual testing can be done, but due to the time
consuming and boring nature of manual testing, it is
hard to ensure that all required tests are performed.
An automatic tester can solve this problem by easily
rerunning tests on functions that previously passed
tests.

When a new fault is detected in the application
under test, the specific tests are written to identify
this fault and the tests added to the regression test
set prior to the fault being fixed. These tests are then
used by the software developers to verify that the
fault has been fixed.

1.2 Background to the Application
Under Test

The electricity network on the island of Tasma-
nia, off the south east coast of Australia is operated
independently from mainland Australia, and is re-
sponsible for coordinating its own electrical energy
needs. With a view to fostering increased compe-
tition in Tasmania by connecting into the National
Electricity Market (NEM), it was proposed around
the mid 1990’s to install an undersea High Voltage
Direct Current (HVDC) electricity link with the
mainland. While the State had sufficient generating
plant for coping with the peak demand, it was short
on long-term energy storage.

The connection known as Basslink, which is to
be commissioned in late 2005, will enable Tasmania
to join the national market, which operates on the
mainland of Australia. The State will be able to ex-
port electricity into Victoria during high demand pe-
riods and take advantage of the high prices at those
times. Conversely, it will be able to import electric-
ity during the low demand periods when prices are
much lower and therefore more favorable.

One implication of joining the NEM is that the
Automatic Generation Control (AGC) that continu-
ously determines the amount of generation required
in Tasmania, allocates it to the appropriate genera-
tion units and controls the units to their targets, needs
to be interconnected with the National Electricity
Market Management Company (NEMMCO) con-
trol systems. These centralized AGC control sys-
tems are located in Sydney and Brisbane and send
targets to generation units Australia wide so that they
meet the power system demand for the market op-
eration, within specified system control parameters.

The application being developed interfaced be-
tween the Australian multi-State AGC system and
the principal Tasmanian State AGC. It was named
the Pre/Post Processing (PPP) application due to
its relationship with the Tasmanian operator’s AGC.

Due to the continuous operation of the applica-
tion and the high visibility and economic implications
of any failures, this has led to the requirement of a
robust system for the management of electricity gen-
eration reserve.

The PPP application was initially coded and tested
using Microsoft Visual C++ within a Microsoft(R)
Windows environment and then ported to UNIX
operating on Alpha servers.

1.3 Testing Environment

The choice of the windows testing environment
was based on considerations such as: nature of in-
put data, requirement for a GUI, in-house knowl-
edge and cost. In particular, the use of standard
office applications provided efficient test data set
construction, maintenance and analysis.

As the majority of applications written by the cli-
ent are in the windows environment, a general pur-
pose automated regression testing tool would have
additional benefits to the company outside of this
project.

105

Test source

data Test results
. e
MSExcel Delphi
Spreadsheet Application text file

Test data
to DLL

v

h 4

Test result
data from
OLL

Ii C++DLL :]

Figure 1. Data flow for test application.

A number of development environments for the
regression testing tool were considered including:
Visual C++, Visual Basic, C# and Delphi. Delphi
was eventually chosen for its GUI strength and match
with the skills available at the client who would even-
tually perform ongoing maintenance of the software.

The PPP software was presented as a Dynamic
Link Library (DLL) and input data was provided in
an MSExcel spreadsheet. Test results are displayed
in the GUI as well as being saved to a text file. Fig-
ure 1 shows the flow of input and output data.

While there was some customization of the ap-
plication to make it available as a dll, the use of adll
was a deliberate decision to provide a standard in-
terface to the regression testing tool. It allowed mul-
tiple versions of the dll to be maintained in a com-
piled form in arevision control system (RCS), along
with the source code so that faults that were identi-
fied late in the testing cycle could be verified against
the earlier version to determine when the fault was
introduced to the production code.

2. PROBLEM DOMAIN

2.1 Analysis

Analysis of the problem began with informal dis-
cussions between the software developer and the
client. Due to the non-commercial nature of the work
and the relatively small application size, a formal

106

specification was not developed. Instead, analysis
and development progressed with small incremen-
tal and iterative steps with frequent demonstrations
of functionality to the client— RAD methodologies.

The initial testing approach was to use ‘Black
Box’ testing (Jorgensen, P.C) but it was realized that
due to the large number of input variables, the quantity
of input data required to test all possible variations,
meant that strict black box testing would be imprac-
tical. A mix of white and black box testing was
employed with white box testing used mainly at the
function level and black box testing employed at the
system level.

2.2 Details of Application Under Test

The PPP application is written in ANSI C and
employs a single large C structure for the mainte-
nance of its internal variables. While the application
is event driven, the large majority of the application
consists of a single threaded application that is ex-
ecuted every second. It is primarily this thread that
was tested using this regression testing application.

In interfacing the PPP application with the
RILTester, a set of standard functions were designed
that would be ‘exported’ to the RILTester and would
be generic to any application under test.

These ‘C’ definitions for each of these functions
are:

fb}Regressiun Tests
File:

Select (highlight) the Excel sheet(s) with the test

=18]x]

[Fe) Load Dalal Validate Datal Start Tests | ™ Single Tests

- v Select All
data thetyou want to use in the test

Calc_Basepointst | Sheeti$

B0 1

o
=i

EE.BEE7

5 A A O . 2

GLI[0)_Basepaint_for_HTGCH#AY [GU(T)_EPF_Lowertiay | GLID)_EPF_Raisshay [GU1] Assigned_AgUnit [GUIT)_Online_as_GEN#&Y [GU[1)_Contiol_Statustay [GUM] Output_Capaciyiisy [1~
75
74
74

1

ocloloooooocooooo
IR IR IR IR I e I R A I A]
~
@

Test Results

Calc_Bazepointst | Sheet1$ I

Abort Tests

TEST_MO| FUMC_NO | Actual_GU(0)_Basepaint_for HTGC.AV1 Expected_GU(1)_Basepoint_for_HTGC.A%1 | Actual_GU[1)_Basepaint_for_HTGC.AY1 Expected GU[O]_EPF.&Y | Actua_EU[[ﬂ
1 51 25,8333 25,6333 0]

2 195 B2 26.6666 26.6666 0 0

3 195 B3 27.4333 27.4333 0 0

4 195 B4 26,3332 26,3332 0]

5 195 5] 291665 291665 0]

B 195 = 29,9998 29,9998 0]

7 195 E7 30,833 30,833 0 0

g 195 B8 31.6664 31.6664 0 0 =
T o

Show Failed Tests Only | Shaw AllPesuts | Cleat Resuits | Display &1 Inputs and Dutputs |

Figure 2. The GUI interface of the RILTester. The top half of the screen shows the
input data, and the bottom half shows the test results.

__decl spec(dl I export) int _ stdcall
Test _Initialise();

__decl spec(dl I export) int _ stdcall
Test _Destroy();

__decl spec(dl I export) int _ stdcall

Test _d ean();

__decl spec(dl |l export) float _ stdcall
Test _GetPtr(char *Logi cNane);

__decl spec(dl I export) int _ stdcall
Test Put Val ue(fl oat | ndex, char *Val ue);

__decl spec(dl I export) int _ stdcall
Test _Get Val ue(fl oat I ndex, char *Val ue,
i nt MaxLength);

__decl spec(dl | export) int
Test Run(int TestNumber,

*Ret ur nedVal ue) ;

__stdcall
doubl e

The functionality of each of these functions is
briefly outlined in table 1. The table describes the
use of a logic model name. This is a human readable
name that is used to identify a particular element of
the data structure such as Generating_Unit[1].MW.

It is proposed that these functions would be cus-
tomized for each new application being placed un-
der test. For example, the logic model variable names
would need to be resolved into different data struc-
tures for each application.

3.SSOFTWARE
DEVELOPMENT: THE
RILTESTER

3.1 User Interface

The GUI of the RILTester (Figure 2) is split into
two main sections. The top section displays the in-
put data that has been imported from the MSExcel
spreadsheet. The bottom section shows the results
of'the testing that are also automatically saved to a
comma delimited text file. The spreadsheet can have
data on multiple sheets, and Figure 2 shows how
the data from each sheet is placed on a different
‘tab’. Only data from the selected tabs is used for
testing. To reduce the chance of ‘bad’ data causing
a problem during testing, the input data can be vali-
dated before the testing starts. The user can choose
to display either all the results or just those for tests
that have failed.

3.2 Design

The continuous design philosophy (see section
1.1) was employed in that the initial functions speci-

107

Table 1. List of the functions provided by the PPP DLL for testing purposes.

Function Description

Test_Initialise() Initialises the application under test. Sets up memory structures and
opens files if required.

This function is called once by RILTester during the initialization
sequence.
Test_Destroy() Releases memory and cleans up ready for termination of the dll.

This function is called once by RILTester during the termination of
the RILTester application.
Test_Clean(); This function reinitializes the memory structure to a known state.

This function can be called between the steps in a regression test to
place the application under test into a pre-defined known initial
state.

Test_GetPtr(char *LogicName); In order to speed up the updating and retrieving of the individual
elements within the data structure. The exact implementation will
vary between the different applications under test.

In the PPP application, the floating-point value that is returned is a
memory offset pointer from the base of the data structure. The
integer portion of the float is the offset in bytes while the fractional
part represents how the data is formatted in memory. For example,
the following fractional parts are used to represent the associated
storage format types:

0.1 =float
0.2 =integer
0.3 =time t

0.4 =DQ (special data type for the PPP application)

This function is called once for each element of the data structure
that is to be updated or retrieved by RILTester (as defined in the
spreadsheet).

This function also resolves any array indexes such as
Generator_unit[23].MW as part of the determination of the index

value.
Test_PutValue(float Index, char The values are updated into the application under test’s data
*Value); structure using the index determined above and the value passed as

a string. The decision to use a string was adopted, as this would
provide the most flexibility as to the data that could be passed.
Test_GetValue(float Index, char This function is similar to the Test Put Value() except that it

*Value, int MaxLength); retrieved the value.
Test_Run(int TestNumber, double | Each function to be tested is allocated a test number.
*ReturnedValue);

In the PPP application, every function was allocated at least one
test number. That allowed the low level functions to be tested prior
to the testing of the higher-level functions.

Some functions were allocated multiple test numbers. This
occurred when a constant was passed in the parameter list such as
Summate (a, PP_RAISE ONLY, b, c). In this case one test passed
the PP_RAISE ONLY while another test used the

PP LOWER ONLY definition.

In many cases the tests used hard coded array indexes in the
function parameter lists as the test Summate(a[0], b[0], c[0]) would
not operate differently than Summate(a[1], b[1], c[1]).

A ReturnedValue parameter was passed back to RILTester for
those functions that returned a result such as ¢ = abs(b).

108

startTests

z Start Test button
Pre (SELECT) Clear Clear) Abort o_op groun Show Set Output caption
Output Output File | | Tests highlighted Column _
Check preCheck Tab N List| |=fal tab Results Width =
result ans ames LIs =ralse ans \aths ‘Start Tests’
=1 2 |
Start Test button . Display Start Test .
caption Exit (Start ‘No button caption Exit (Start If tab is
_ Test _ Test -
= rocedure) sheets to = procedure) highlighted
Failed’ ‘Start Tests' P check’ ‘Start Tests’
/Y
N
e Close Add dummy to
Get Test Initialise Open N
LogicNames (dll call) FileWriteHeader getindexes doTests 0:;‘;”' °“tp”‘tg';""’"“’s

Figure 3. Structure diagram of the main process called when the
‘Start Tests’ button is pressed.

fied by the client were developed, and then each
additional function was implemented when requested
by the client. There was a critical moment in the
evolution of the software when the initial simple de-
sign was unable to cope with the addition of new
functions. At this point a major rework of the code
as well as design documentation was performed
before it was possible to continue to add additional
functionality.

Although the application is likely to receive fu-
ture developments, the current design and imple-
mentation makes extensive use of Delphi Classes,
and the high level design follows a procedural flow.
Figure 4 shows the structured diagram for the code
that runs when the Start Tests’ button is pressed.
The top down design used the divide and conquer
approach, where major tasks were written as sepa-
rate functions. As well as allowing for code reuse,
the practice of using multiple functions facilitated the
testing of the RILTester with each function returning
a value to indicate if the function had completed as
expected. The use of ‘stubs’ was used during de-
velopment to allow the overall design to be tested
before every function was completed.

3.3. Major Implementation Decisions

3.3.1 Extracting Data from the MSExcel
Spreadsheet

The client required all input data to be supplied
in an MSExcel file, using multiple sheets. The first
row of each sheet contained the ‘logic model’ name
and subsequent rows the actual data. Aswell as the
input data, each row contained the expected output
data. The actual input variables and required out-
put data on each sheet was not known at ‘design
time’ and represented only a small sample of the
possible variables. The number and name of the
input sheets was also an unknown at design time.
These unknowns presented a design issue for dis-
playing data to the user in the GUL

The Delphi ActiveX Data Object (ADO) con-
nection (TADOConnection) was used to connect
to the MSExcel spreadsheet. This allowed the
spreadsheet to be treated as a database, with each
sheet treated as a separate ‘table’ and the first row
of each sheet giving the ‘field’ names. The input
data could then be accessed using standard SQL.
TADOConnection provides the GetTableNames
method, which provides the number and names of
the input sheets i.e. tables. The Delphi TPageControl
class is used to provide a tabbed sheet on the Del-

109

phi form and a tab is added for each table. As each
tab is created, an instance of the Delphi TADOQuery
class and an instance of the TDBGrid class are
placed on each new tab, so that each set of data
can be accessed and displayed separately. Lists
are used to store the names of the instances so that
they can be referred to by their place in the list at
design time.

A special character was reserved for use in a
spreadsheet cell (e.g. “*’) that was interpreted by
the RILTester to skip the updating of a variable in
the application under test. This was required due to
anumber of variables needing to be initialized (and
therefore be identified in the input section of the
spreadsheet) but should not be updated during sub-
sequent tests. This is particularly significant for ap-
plications that have a dynamic response that requires
reviewing. It has the additional benefit that by not
initializing all input data for subsequent tests, array
overruns could be detected where they corrupt sig-
nificant data.

3.3.2 Connecting to the DLL

The DLL under test presented seven functions
that the RILTester needed to access. This is achieved
in Delphi by declaring the functions as external and
giving the DLL name (and in this case the ‘mangled’
name of the function). The DLL also used pointers
to reference variables and structures that had to be
replicated in the RILTester.

3.3.3 Displaying and Saving Results

As for the input data, the quantity of output data
was unknown at design time and the method used
to display this data was similar to the display of in-
put data. Once the number of input sheets was de-
termined, the correct number of tabs on the output
control (TPageControl) was created. All output
data was written to a text file with comma separate
values (CSV) format. An instance of the Delphi class
TStringList was used to both read the CSV file us-
ing the LoadFromFile method and store the data in
memory. The contents of the T'StringList were then
displayed on the form using instances of the
TStringGrid class.

The provision of a CSV file allowed the dynamic
response of the application under test to be viewed
using graphing tools.

110

3.3.4 Performance Issues

Due to the possibility of a large number of tests,
ways of improving the time take to perform the tests
were investigated.

3.3.5 Writing to Disk

There exists a conflict between reducing the time
for testing and providing a safe guard against loosing
all data if the system fails. The initial design wrote
test results to the text file after each row of input
data. This meant that if a testing session was left to
run unattended, say over night, a system crash would
not mean the loss of results already obtained. How-
ever disk access is a known potential bottleneck in
processing through put and so a compromise, be-
tween these conflicting requirements was imple-
mented by writing to disk after a set number of tests,
initially set to 1000.

3.3.6 Look Up Values

The initial implementation required the Ril Tester
to query the DLL for a pointer before each new
value was sent to the DLL i.e. for each row of test
data the pointers were requested from the DLL for
each value. Due to approximately five hundred logic
model variable names being used, the lookup time
to resolve this name into a memory point was sig-
nificant. To remove this step, when the pointers were
first obtained from the DLL, they were stored in the
RilTester for subsequent use. This enabled highly
repetitive calls to be made to the PutValue() and
GetValue() functions with minimal overhead.

4. RESULTS

The RILTester was used in practice in two modes:

The first was during the development cycle where
data was introduced to a particular function as that
function was being developed. This permitted func-
tions to be written in isolation of the remainder of
the application, particularly before the application
under test’s interface had been constructed. The
developer would write specific tests to test various
scenarios based on the knowledge of the code and
the part of the function under test. Once the micro-
functionality was verified, the test cases were saved
to another tab within the spreadsheet to be used
subsequently when the function had been completed.

This method verified that as further micro-func-
tionality was developed within the function, the func-

tionality that had already been proven was not cor-
rupted.

The second method that was employed was the
back-box testing where the System Analyst would
construct test cases based on the Business Func-
tional Requirements and the System Software De-
sign documentation.

4.1 Benefits to Students

This work was integrated with the delivery of the
course PR614 Programming (Interactive), part of
the Diploma in Information and Communications
Technology (Level 5) delivered at Wintec. Students
were set a major assignment based on the require-
ments for this application. It was explained to the
students that the tutor had taken on the task of de-
veloping this software and that they were going to
assist by developing their version in parallel. The
course followed a Problem Based Learning ap-
proach and details of the outcomes and lessons learnt
will be reported elsewhere.

A future benefit of the application would be to
have the students design their application as a dll
that could be tested by the examiner with a number
of'test cases to verify the robustness and accuracy
of'the students’ coding.

S. SUMMARY AND
CONCLUSIONS

The development of a custom testing application
to enable regression testing of a critical electricity
supply infrastructure system has been described.
Borland Delphi was chosen for the development
environment as it provided the ability to easily inte-
grate the requirements of GUI design, ability to con-
nect to external data sources and software to test,
as well as being one of the skill sets of those re-
sponsible for future on going maintenance. The con-
tinuous design philosophy was employed resulting
in a top down procedural approach with extensive
use of predefined classes that proved to be a suc-
cessful and rapid solution to the client requirements.
The software design was documented using struc-
tured diagrams that allowed for rapid implementa-
tion of additional requirements as they became nec-
essary.

The client has used the software to run extensive
regression testing of mission critical software for the

management of electrical generation reserve. The
RILTester interfaces to the application under test
using a set of generic functions, so allowing the
RILTester to be used to perform regression testing
on future software applications created by the cli-
ent.

ACKNOWLEDGMENTS

The authors would like to thank Hydro Tasma-
nia and Realtime Information Limited for permis-
sion to publish this work.

REFERENCES

Beck, K. (1999) “Extreme Programming Explained”.
Addison-Wesley Pub Co, ISBN
0201616416.

Jorgensen, P.C (1995) “Software testing: A
Craftsman’s Approach”. CRC Press, ISBN
084937345X.

Shore, J (2004) “Continuous Design”. IEEE
Software, 21(1):20-23.

111

