
336

Behaviour Objects: Taking the Feel
out of Look and Feel

Mike Lopez
Manukau Institute of Technology

mike.lopez@manukau.ac.nz

One of the many challenges facing cross-platform developers is
that of producing an application that has the “look and feel”
(appearance and behaviour) of one that is designed specifically
for the target platform. The developer also wants to use a
common code base for as much of the application as possible.
Conventional approaches dictate the use of an n-tier architecture
in which the look and feel is encapsulated in a user interface
layer, separate from the business and persistence objects of the
application. This approach allows the use of a single code base
for the latter with only the UI being platform dependent.
There are ample tools and guidelines available to support getting
the appearance of the UI right, but few are available for managing
behaviours.
This paper introduces the concept of behaviour objects and
describes an approach in which user interface behaviours may
be abstracted from the application and encapsulated in a set of
behaviour objects that may then be plugged-in to an application
object model.

1. INTRODUCTION
We often say that a well designed Windows ap-

plication should look and feel like a Windows ap-
plication and we say the same thing for Macintosh
and Unix applications. There’s a lot of commonsense
in this. Users can learn to use applications much
faster if the application conforms to the “look and
feel” guidelines for the platform. Moreover, vendors
such as Microsoft and Apple invest substantial re-
sources in usability testing when developing these
guidelines and the application developer can exploit
this investment simply by following the guidelines.

Best practice has also dictated that the look and
feel of an application has been separated from the
core business logic and encapsulated in a separate
User Interface or Presentation layer. This facilitates
cross platform development by enabling a common
code base for the core business logic with separate
UI layers for each platform. This has been accepted
best practice for so long that we have been condi-

tioned to use the words “look and feel” together as
if they were natural siblings.

Recently, this packaging together of look and feel
has been challenged by the ability to define and ap-
ply “Skins” (Microsoft 2002) to the application.
These skins control the appearance of the user in-
terface without affecting its core logic. Current work
such as Longhorn (Microsoft 2003) attempts to fur-
ther separate out appearance from the program by
using XML specifications to control appearance.

This paper raises the question of whether we can
take a similar approach with the “feel” (or behav-
iours) of an application. If we abstract these behav-
iours into a standard set of objects then we could
take a standard Windows application and add a
Macintosh feel, or a Tablet PC feel without having
to change the application code.

2. THE CONCEPT
The “feel” of an application is broadly defined

by the set of behaviours that it exposes to the user.
Typically, these behaviours are hard coded into each
application. This paper first uses two examples (Soft
Input Panel and VerticalScrollability) to look at how
individual behaviours can be abstracted from appli-
cation code and encapsulated into separate objects.
The paper next looks at how a set of these behav-
iours can be packaged together as a “feel” and fi-
nally addresses the issue of how this feel can be im-
plemented as a plug-in so that the application can
be configured to take on different behaviours with-
out recoding.

The sample code for all the examples in this pa-
per uses Visual Studio.Net to target the DotNet
compact framework on the Pocket PC. The con-

337

cepts illustrated can of course be applied to all OO
environments. The sample code can be found on
the author’s Website.

3. POCKET PC SOFT
INPUT PANEL

The Pocket PC does not have a keyboard so
data entry is accomplished by handwriting recogni-
tion or by using a stylus to pick out letters from a
keyboard image displayed on the screen.

Because of the limited screen real estate, best
practice (Microsoft 2003) has evolved to suggest
that the soft input panel should be displayed when-
ever the program is expecting text input and hidden
otherwise. In practice, this means that the program-
mer traps the got focus and lost focus events of
textboxes displaying and hiding the panel as required.

The sample code shows how this behaviour can
be abstracted from the application code and imple-
mented in a separate object. The object hooks up
all the events necessary to implement the behaviour.
This behaviour management object can then be
added to any form without the need for coding event
procedures for individual controls.

4. SCROLLABILITY
When developing the DotNet compact frame-

work for smart devices such as the Pocket PC,
Microsoft went to great lengths to minimise the
memory footprint. A consequence of this is that many
familiar objects lack the functionality of their coun-
terparts in the full framework. In particular, forms
and panels do not have any built-in capability for
scrolling.

Although reliance on the stylus means that ex-
cessive use of scroll bars is probably a bad idea, it
is important to keep the focused text box visible
whenever the soft input panel would otherwise ob-
scure it. Limiting text boxes to the upper part of a
form is unnecessarily restrictive and the ability to
scroll the main form programmatically is an easy way
to achieve this functionality without that restriction.

The sample code shows how we can implement
on demand scrollability as a separate behaviour
object. We can then just add the behaviour to a form
(or indeed to any other container).

4. PACKAGING
BEHAVIOURS INTO FEEL

Although trivial, the two examples given above
illustrate how behaviours can be implemented ex-
ternally to the application code. We could of course
package these as toolbox components that the pro-
grammer could drop onto a form to get the behav-
iours, but we’ll take the idea a little further first.

The next step on our journey is to package to-
gether a number of behaviours to give a “Feel”. To
keep things to the essentials, we’ll just use our
scrollability and input panel behaviours. We will need
to coordinate these two behaviours so that they
work seamlessly together; it is this ability for behav-
iours to work in a coordinated and seamless man-
ner that transforms a set of disparate behaviours into
a “feel”. To facilitate this coordination, it is impor-
tant that the behaviour objects themselves expose a
well thought out event model.

When we add this feel to a form, a scrollbar will
appear automatically whenever the form needs it,
the soft input panel will appear whenever the focus
reaches a text box, and the form will automatically
scroll to keep the text box visible if the soft input
would otherwise obscure it.

The code for this is trivial; the constructor just
initialises the two behaviour objects and sets up lis-
teners to the SIP panel events. A real-world Feel
object would not be much more complex; just cre-
ating a few more behaviours, and possibly
configuring then from an “appSettings” xml file.

5. FEEL AS A PLUG-IN
CAPABILITY

The final stage in this journey is to add plug-in
capability. Let’s assume that that there is a configu-
ration utility that enables a user to choose from sev-
eral “Feels” that are available for a platform. This
utility could apply this choice by modifying a global
configuration file, or a local application file.

Rather than adding the feel directly to a project,
the programmer adds a FeelManager object. This
object then identifies the Feel configured by the user
and applies it to the application.

The sample code demonstrates the techniques
used to achieve this plug-in based on configuration

338

in an appSettings file. Writing the configuration util-
ity is left as an exercise for the reader.

6. SUMMARY
In general, behaviours can be abstracted from

any system of objects that has a well designed event
model and implemented in separate behaviour ob-
jects. These behaviour objects can then be pack-
aged into a “Feel” object that implements a stand-
ard set of coherent behaviours. Plug-in technology
enables different Feels to be applied to an applica-
tion after development.

7. POSSIBLE FUTURE
WORK

The next logical step is to develop sets of stand-
ard behaviours that conform to platform guidelines.
This would facilitate cross-platform development.

Further development would enable CHI special-
ists to develop “feels” that represent best practice in
usability and to implement these feels in software
that can be applied to any existing applications that
follow these guidelines without the need to modify,
or even have access to, the application source code.

REFERENCES
The author’s Web site can be reached from http://

www.manukau.ac.nz/
Microsoft, 2002, “Explanation of User Interface

(UI) Skins”, Downloaded on May 11th 2004
from http://support.microsoft.com/
default.aspx?scid=kb;en-us;253739

Microsoft, 2003, “What is Windows “Longhorn”?”,
Downloaded on May 11th 2004 from http://
www.microsoft.com/windows/longhorn/
default.mspx

Microsoft, 2003, “Using the Input Panel
Component”, Downloaded on May 11th 2004
from http://samples.gotdotnet.com/quickstart/
compactframework/doc/inputpanel.aspx

339

