The FactBase™: Robust and Secure
Data Storage for Distributed and
Disconnected Systems

Mike Lopez
Manukau Institute of Technology
Manukau, NZ
mike.lopez@manukau.ac.nz

To provide a positive user experience, an application generally
needs to provide the user with a sense of the current state of the
system. To support disconnected operation, data must be
stored locally in caches. These rapidly become stale, leading to
a reconciliation problem. Even when connected, getting
agreement between distributed nodes on what constitutes
current state is far from trivial.

Most applications use some sort of database to hold current
system state, and from this perspective the problem of agreeing
on current state becomes a distributed database problem.
Reconciliation involves substantial programming effort and use
cases proliferate with the need to program for both connected
and disconnected modes of operation.

This paper introduces the concept of a FactBase™ which is a
secure and robust distributed collection of Facts. Facts are
defined as immutable aggregates of data. This immutability is
the key to avoiding reconciliation issues and use case
proliferation. A single programming model can be used for both
connected and disconnected modes with the software moving
seamlessly between the modes as connectivity is gained and
lost.

1. INTRODUCTION

This paper starts by briefly reviewing current
practice in database design and implementation and
identifying the problems that are introduced by dis-
tributed and disconnected systems. It then demon-
strates on a theoretical basis how these problems
are a direct consequence of the approach we take.
It raises the question of whether attempting to have
a global current state is a useful concept and then
proposes a new way of looking at the distributed
data storage problem.

2. CURRENT PRACTICE

Much of our Systems Analysis has led us to ana-
lyse the data in our problem domain, eliminate du-
plication and redundancy, and define a central da-
tabase containing normalised data. The database
typically contains our current view of the problem

340

domain and is implemented on a server. Transac-
tions are used to promote “acidity” (Microsoft
2004). Although the concept of a central repository
of data introduces a single point of failure, in prac-
tice this server-centric approach works well on lo-
cal area networks.

When we distribute the application over a wide
area network using a central server, the user experi-
ence is degraded by the lower communications
speed and scalability (Microsoft 2004) is rapidly
degraded by the use of transactions. This is because
the transaction holds server isolation locks for an
extended period of time.

In general, we have two options to moderate this
degradation; we can replicate (Thompson 1997,
Mysql 2004) the database at each local node and
attempt to reconcile the diverging states from time
to time; or we can use the central database and at-
tempt to cache sufficient local data to enhance the
performance and user experience and use server
based processing, such as stored procedures, to
limit transaction duration

When the system includes sometimes-connected
nodes such as notebooks or handheld devices we
generally have to provide for operation in both con-
nected and disconnected modes. To do this, we have
to cache sufficient data on the local device to pro-
vide a meaningful user experience while discon-
nected and then have to reconcile this local data with
the on-line state when next connected.

Business-to-Business applications generally pre-
clude the use of a single server since each business
is unlikely to trust its sensitive data to a business
partner. In consequence, these applications typically
require the use of a distributed transaction coordi-



nator despite the scalability issues this brings
(Microsoft 2004).

When we want to use a single architecture to
develop an application that embraces all of this func-
tionality we are really left with just one option; an
approach that comprises holding local caches of data
and the ability to reconcile the consequent differing
views of current state.

Local caches of data are required to improve
the user experience but deciding just what data to
cache is by no means trivial. Even if adequate stor-
age exists, caching a complete database on devices
such as handheld or laptop computers in unlikely to
be acceptable commercially for security reasons.
Really, we need to use a different schema that limits
the data stored on a need to know basis and this
schema needs to be able to define content as well
as structure.

Having decided to store caches of data at many
locations, we then have the problem of ensuring that
all the data stored is consistent. The most common
technique is for each node to attempt to reconcile
its local data with a “master” copy of data kept on
some server.

For disconnected nodes, reconciliation use cases
proliferate in a non-linear manner as use cases are
added to the node and to the overall application. (In
theory, if a node implements a subset of n use cases
out of a total of m for the application, there could be
at least 2n + n.m/! use cases for the programmer to
explore.) This use case proliferation means that it is
not practical for the programmer to code each one,
except for the most trivial applications. The result of
this is a lack of robustness and a degraded user ex-
perience.

The underlying assumption of this reconciliation
process is that the server holds the “current” state
of the problem domain. Although theoretically flawed
in all cases, this concept is generally useful on local
area network based system, but its usefulness de-
grades as latency increases with wide-area and dis-
connected systems. In particular, there may be valid
updates stored on some disconnected device and
the server will only becomes aware of these at some
future time when synchronization occurs.

3. THE PROBLEM

One part of the problem, thus, is the notion of
global current state. In reality, whatever technology
is used, each node has its own view of state that
excludes work at other nodes that is in progress, or
has been completed but not yet incorporated into
global state. Attempting to resolve a global current
state requires substantial programming effort and
adds no value to the user experience at each node.
In contrast, global historical state is easy to derive
and has significant value.

The other part of the problem is that our
databases are typically full of derived information
(or state) rather than raw data. Whenever we store
derived information then, by definition, we rely on
some underlying process that derives this from raw
data.

To reconcile diverging views of derived state, we
need to know both the process that is applied and
the underlying raw data that the process used. If we
know both of these then we only need to store the
raw data in the database.

3.1 The requirement

To solve the above problems, the key require-
ment is to eliminate all forms of derived data from
the shared database and to implement an architec-
ture in which current state is derived locally from the
shared data to enhance the user experience. Global
state can be made available on an historical basis.

3.2 The solution

In order to make a distinction between the sug-
gested approach and current practice we will intro-
duce the term Fact for raw data, and FactBase™
for its management software.

A Fact is defined as an arbitrary aggregate of
immutable data. A fact is therefore inherently repli-
cable and repeatable. In distributed application ter-
minology we can say that a fact is idempotent (Field-
ing et al., 1999). These characteristics guarantee
that reconciliation of facts across nodes is trivial and
can be automated.

Context is required in order to derive meaning
from a fact and we define a fact context as the set of
other facts that must be known in order for the cur-
rent fact to be understood. Facts therefore naturally
form a directed acyclic graph. This graph allows facts

341



to be processed correctly even when they arrive out
of sequence.

The suggested approach is that applications can
use a FactBase™ that has collections of facts stored
at multiple nodes. Each node records the facts it
originates and publishes those facts to interested
subscribers. The node also caches copies of facts
originating from other nodes. It can recover any lost
facts from the original publisher, or its own lost facts
from trusted subscribers. Fact storage, publication
and subscription are easily automated in a standard
manner.

The node can then use the facts to derive a logi-
cal object model that is stored locally. The logical
object model represents the local view of the prob-
lem domain state and can be used to enhance the
user experience. There is no need for the state of
these local object models to be identical, only the
facts need be shared.

No servers are needed. The approach eliminates
single points of failure and promotes robustness by
enabling massive redundancy.

The model works equally well in connected and
disconnected states without use case proliferation.
Rather than programming for two modes, all pro-
gramming is carried out for a disconnected mode of
operation. Each node simply records the facts it origi-
nates in the local cache and receives inbound facts
from the nodes to which it subscribes. The only dif-
ference between connected and disconnected
modes is the response time from other nodes. Fact
publishing, replication and reconciliation is trivial and
can be carried out automatically by standard soft-
ware.

To help visualize the concept of what is meant by
afact, itis useful to consider an Audit Trail. By defi-
nition, an audit trail should document all changes to
a system’s state. It should also enable easy re-crea-
tion of the state. Above all, the audit trail must be
immutable. Clearly, there is a close correspondence
between the concept of an Audit Trail and that of a
Fact.

4. VALIDITY

When evaluating storage technology we usually
ask whether it passes the “Acid” test.

Atomicity: A fact is the unit of atomicity and is
the analogue of a transaction. Facts arrive at nodes

342

intact and complete, or do not arrive at all and can
be any arbitrary aggregate of data.

Consistency: Derived state is updated only by
the local node. The node can use standard synchro-
nisation mechanisms to prevent access by other ap-
plication threads while the state is being updated.
These synchronization locks do not affect other
nodes so there is no scalability problem.

Isolation: There is complete isolation of derived
state from other nodes because the object model is
local.

Durability: Copies of facts are kept at other
nodes. This redundancy enables data to be recov-
ered from other nodes without the need for central
storage.

S.IMPLEMENTATION

To illustrate the concept, a proof of concept soft-
ware package has been written for the basic
FactBase™ with implementations for the dot net
framework on the Windows desktop and the com-
pact dot net framework on the Pocket Pc.

6. CONCLUSIONS

A fact-based architecture invites us to look at
distributed applications from a fresh viewpoint. It
also suggests an alternate methodology for analysis
and design. The proposed architecture can be ap-
plied simply to all studied design patterns. For ex-
ample, the allocation pattern requires the requester
to publish a request fact and the allocator to publish
aresponse.

The approach enables a single set of use cases
to be used for both connected and disconnected
modes. Performance is high when connected, de-
grading gracefully when disconnected.

The architecture allows distributed data storage.
There is no need for a central point of reference,
nor is there any benefit in having one. Robustness is
enhanced through redundancy.

The approach taken in this paper suggests that
the audit trail should take a central role in system
design.

6.1 Future work

This work is part of an on-going project in dis-
tributed program architecture. Current work includes



the creation of a commercial strength implementa-
tion of the software.

REFERENCES

Microsoft, 2004, “Introduction to Transactions”
Downloaded on May 122004 fromhttp://
www.sqlteam.com/item.asp?ItemID=15583

Microsoft, 2004, “Scalability” Downloaded on May
122004 from http://msdn.microsoft.com/
library/en-us/vsent7/html/vxconScalability.asp

MySql, 2004, “Replication in MySQL’Downloaded
on May 1272004 from http://dev.mysql.com/
doc/mysql/en/Replication.html

Thompson, c, 1997, “Database
Replication”’Downloaded on May 12%2004
from http://www.dbmsmag.com/9705d15.html

Microsoft, 2004, “DTC Developers
Guide”Downloaded on May 12%2004 from
http://msdn.microsoft.com/library/en-us/
cossdk/htm/pgdtc_dev_Oulh.asp

Fielding et al, 1999, “Idempotent methods”,
published in rfc2616, 9.1.2 Downloaded on
May 12" 2004 from http://www.w3.org/
Protocols/rfc2616/rfc2616-sec9.html

343



