JavaScript Hit Counters

Dr Jan Pajak

School of Information Technology
Wellington Institute of Technology, Wellington, New Zealand
Jan.Pajak@weltec.ac.nz

This paper presents a summary of basic information
regarding hit counters programmed in the JavaScript language
and operating on ASP servers. It describes the major functions
and capabilities of such hit counters, and explains how these
functions can be programmed. It shows source codes,
programmed in JavaScript, for a simple hit counter that can be
directly utilised on ASP servers. It reveals what other information
hit counters can additionally gather, if they are appropriately
extended. It also explains JavaScript insertions of code, which
are capable of gathering such additional information. In
conclusion, the paper discloses to readers main areas of
applications of hit counters.

1.INTRODUCTION

In current Internet terminology the name “hit
counter” is assigned to a small scripting insertion
embedded into web pages and aimed primarily at
gathering statistical information regarding visits to a
given web site. For example, in standard implemen-
tations they count and record a numbers of visitors,
or anumber of visits. Note that visits to a given web
page in Internet jargon are called “hits”. Hence the
name “hit counter”.

This paper aims to analyse the operation of
hit counters and demonstrate their workings by
showing the client and server side code of a
simple example. From this the paper proceeds to
explain how more complex hit counters typically
operate.

To accomplish this aim I will (a) present a
JavaScript code for a simple hit counter, (b) explain
how the code works, (¢) explain how it could be
developed further into complex hit counters through
including additional capabilities, and (¢) share my
findings and conclusions regarding such complex hit
counters.

396

2.CODE OF A SIMPLE HIT
COUNTER

A typical hit counter is composed of two sepa-
rate components, which usually are called “client-
side” code, and “server-side” code. The client-side
is always programmed as a very simple piece of
code, which is inserted into a given web page. The
only purpose of this component is to gather the re-
quired information about each visit to a given client
web page, and then to send this information to the
server-side for further processing. The code of the
client-side is always made available to users of hit-
counters. However, this code does not say much
about how a given hit counter operates and how it is
programmed. The server-side component of the
hit counter is the one, which does all the processing
and information gathering. Usually itis located on a
distant server, which in many cases is separate from
the server on which a given (client) web page is lo-
cated. Therefore, the actual operation of a given hit
counter and the type of information that it gathers is
determined by the code contained in this server-side
component. But the code of the server-side is NOT
made available to anyone. So apart from the team
which programmed the code, almost no-one knows
what it contains and does. Other parties can only
speculate about this code on the basis of informa-
tion that it produces, and on the basis of data that
the client-side sends to it.

In order to give an example of a simple hit coun-
ter, presented in Figure 1, a brief “client” web page
programmed in HTML. This client page contains
almost nothing apart from the client-side code for
a simple hit counter. This code is clearly marked

<htm >

<head>

<title>A sinple hit counter</title>

</ head>

<body>

<di v align="center”><hl>

Here is a sinple hit counter

(refresh if rusty)

<I—Hit counter code begins —

<script src="count.js”"></script>

<a href=http://Pajak. 20m conp<i ng src="counter.asp” alt="Visit PR655 on
Paj ak. 20m conf w dt h="110" hei ght ="40" BORDER="0">
<I—Hit counter code ends —

</ hl></div>

</ body> .
</ htm > Figure 1

<% @I anguage = “JavaScript” %

<%

var current_count = 1;

function Read_Stored_Counter() //Retrieves a stored val ue

{

var filenane="stats.txt”; //This assigns the file nane to be read

var file_ _System Object = Server. CreateQbject(“Scripting. FileSystenlhject”);
var inFile = file_System hject. OpenTextFi |l e(Server. MapPat h(fil enane));
current _count = parselnt(inFile.readLine());

inFile.d ose();

}

function Wite Stored Counter() //Saves a new value of the hit counter
{

var filename = “stats.txt”;

var file_system object = Server.CreateQbject(“Scripting. FileSystenlhject”);
var outfile = file_system object. CreateTextFil e(Server. MapPat h(fil enane));
/1 The above creates a new file

outfile. WiteLine(current_count);

outfile.dose();

}

function Wite New Script File() //Generates a script file naned “count.js”
{

var filenane = “count.js”;

var file_system object = Server.CreateQbject(“Scripting. FileSystenlhject”);
var outfile = file_system object.CreateTextFile (Server.MapPat h(fil enane));
outfile.WiteLine(“var hit_no = “ + current_count);
outfile. WiteLine(“docunent.wite(hit_no);”);
outfile.dose();
}
Read_St ored_Counter();
current _count = current_count + 1;
Wite Stored Counter();
Wite New Script File();
%
Figure 2

397

with HTML comments, so it is easy to see what it
contains.

The essence of the “client-side” code (Figure 1)
is to execute the server-side component of the hit
counter. This execution is done through running a
server-side component named “counter.asp” and
coded in a scripting language “JavaScript”. To sim-
plify the explanation, it is assumed here that this
server-side code is located on the same computer
as a given client-side web page. But in reality it can
be located on a distant server. Then instead of name
“counter.asp” of the server-side code, the complete
URL of this code needs to be provided. (Further
explanations of this code can be found on web sites
indicated in the reference section of this paper.)

Figure 2 gives an example of code for a server-
side ASP component of the hit counter named
“counter.asp”, which is to be executed each time
the above client web page is opened. Note that in
order for this code to work, it must be run on a
computer that has ASP server capabilities.

If we analyse the ASP code named “counter.asp”
and shown in Figure 2, it turns out that it carries out
three actions. Namely it:

1.0pens a disk file named “stats.txt”” and reads
data contained in it. In our case this data is repre-
sented by one integer number, e.g. 284, which tells
how many times a given client web page was hit so-
far. But instead of this one number advanced hit
counters may use a large database, which contains
various data regarding the client web page and/or
identities of visitors to this page.

2.Updates the data stored previously in “stats.txt”
and writes this updated data back to the “stats.txt”
file. In our case this updating depends on
incrementing the current count of hits (e.g. from 284
into 285). But in more advanced hit counters it may
update an entire database being gathered. So after
this stage of processing is completed, the “‘stats.txt”
contains updated values of statistics being gathered.

3.Creates a script file named “count.js”. It con-
tains the graphical image of the current count of hits
(i.e. 285). This script file is later displayed by the
line <script src = “count.js”> </script> from the cli-
ent-side component of the hit counter. In this way
users see the count of hits, which represents the im-
age created from this “count.js” file.

398

In our example the content of the “count.js” file
is very simple. It just contains two lines of JavaScript
code, e.g.:
var hit_no=285;
docunent.wite(hit_no);

Ifthese two lines of code are called froma HTML
web page through the following tag:
<script src="count.js”"></script>

the effect is to write 285 into a current window.
(In our case with the “green” colour, as illustrated
on the web site http:/free.7host03.com/Pajak.)

Of course, it is also possible to have more
elaborate and colourful digits displayed by the hit
counter. To obtain such graphically advanced hit
counters, we just need to prepare a series of pic-
tures of individual digits, putting these digits into ap-
propriately named files (for example: “0.gif”, “1.gif™,
“2.gif”, etc.). Then we only need to generate the
“count.js” file, which displays the appropriate com-
bination of these digits. An example of the code con-
tained in the “count.js” file, which is to display such
“designer” digits, is (for three digits that form a hit no
=285):
document . wite('<ing src = “2.gif”
border=0> <ing src = “8.gif” bor-
der=0> <ing src = “5.¢gi f”
bor der =0>
’) ;

In order to generate such graphically advanced
codes of the “count.js” file, the function
“Write New_Script File()” from the “counter.asp”
web page, needs to use a different and more com-
plex algorithm. This new algorithm needs to start
from splitting the variable “current_count” from the
“counter.asp” into individual digits. Then it should
graphically write to the “count.js” addresses of im-
ages of these individual digits. An example of this
algorithm is provided on web sites (Pajak, 2004).

3. COMPLEX HIT
COUNTERS

Ready-made hit counters with basic capabilities,
similar to the one explained above, are offered by
the majority of Internet space providers. In such
implementations these counters usually gather only
statistical information. However, various software
providers and individual programmers extend these
capabilities further, creating very elaborate and very
complex hit counters.

The extension of capabilities of hit counters is
accomplished through firstly sending additional data
to the server-side component of the counter, and
secondly through extending the type of information
stored in the “stats.txt” database. JavaScript is a
powerful language and allows both such extensions
to be made quite easily. These more advanced hit
counters, which include such complex extensions of
the server-side code, can additionally record a whole
array of data, both about visits to the client web
page, and about identities of visitors. The data may
include: date and time of each visit, pages which visi-
tors opened, time spent by these visitors on subse-
quent web pages, and more. In addition to this,
tracking details of visitors can be gathered. For ex-
ample, complex hit counters are able to record URLs
of subsequent visitors, countries in which these visi-
tors are registered, and software these visitors use.
In special implementations such counters may even
gather information about individual illustrations which
these visitors opened and analysed, specific materi-
als these visitors downloaded, features of a given
web page in which these visitors were scanning and
thus especially interested, etc. Thus hit counters can
also be camouflaged security software embedded
into web pages, which provide feedback regarding
not only visits, but also visitors to given web site. As
such, in the majority of cases, code and operation
of hit counters is therefore reluctantly revealed to
anyone. It is then rather difficult to find comprehen-
sive information about their operation, not to men-
tion finding source code for multifunctional counters.

Such complex, multipurpose hit counters, which
offer amultitude of additional information about visi-
tors to a given web page, can be purchased from
various specialised software companies. However,
while making these counters available, their provid-
ers offer them in such a form, that it is only possible
to use them, but is almost impossible to learn details
of'their operation. This means that only code for the
client-side component is revealed, while from the
server-side only the product of the work is made
available. Therefore, in spite of this wide availability
of ready-made complex hit counters, it is very diffi-
cult, if not almost impossible, to get hold of their
source code and descriptions of how these counters
actually work.

Apart from advantages resulting from huge data
gathering potentials, hit counters have also various
limitations. An example of these could be the ambi-

guity that result from differences between interpre-
tations of “visits” and “‘hits”. Often web site owners
may want to know actual “‘customer visits”, as op-
posed to “hits”. After all, “hits” might be incurred
each time visitors refresh a page, or even each time
they click on a graphics from a given page. Thus
totals of “hits” may be slightly misleading, as they do
not fully reflect customer activity. Some complex hit
counters try to rectify this problem by counting in-
stances of different “URLs” (IPs) that visit a given
web page in a given day, rather than counting “hits”.
In this way, the total count of “visiting URLs” is
closer to the real number of visits, although it also
does not account for visitors so genuinely interested
in a given web page that they visit it more than once
ina given day.

4. FINDINGS AND
CONCLUSIONS OF THIS
PAPER

This paper analyses the operation of hit counters
and demonstrates their workings by showing the cli-
ent and server side code of a simple example. It
also explains how hit counters operate as feedback
gathering tools. By disclosing this, the paper real-
ises commercial potentials of hit counters. For ex-
ample, these counters have the capabilities of pow-
erful security software. They are irreplaceable in
cases of market research. They turn out to be ex-
tremely useful in implementations of market-driven
e-commerce. They can also be useful in tracking
web intrusions or computer hackers. Moreover, it
is important to be aware of their capabilities when
we visit various Internet web sites.

REFERENCES

Pajak J. (2004) Unofficial lecture notes (2004-now).
Web sites <http://pajak.ownsthis.com/
IT6212.htm> and <http://pajak.orcon.net.nz/
IT6212.htm>. Accessed April 2004.

399

