
404

Presenting Dynamic
Customised Views of

Objects
John Peppiatt

Manukau Institute of Technology,
Auckland, New Zealand

This article illustrates a technique for making use of the .NET
PropertyGrid component for use in a .NET WinForm
application. The basis of the technology is described through
snippets of VB.NET code that show the use of the PropertyGrid
and the way reflection is used to provided a customised view of
an object.

1. INTRODUCTION
This article demonstrates a technique for pre-

senting selected properties of an object to controls
(such as the PropertyGrid) that use Typedescriptor
technology to discover an object’s properties. The
basic idea is demonstrated using the .NET
PropertyGrid control and it shows how to control
the properties that can be seen on the grid and the
order of presentation. The author has extended the
concept in several related areas including creating a
technology for filtering columns in DataViews bound
to Datagrids, and also to produce new controls that
are derived versions of the PropertyGrid for data
presentation and entry.

2. BACKGROUND
Like many fellow programmers, I find writing

code to edit the properties of objects – like the de-
tails of a customer or order – boring but unfortu-
nately necessary stuff. The driving force behind many
a programming innovation is, of course, the bore-
dom from repetition and a feeling that there simply
must be a better way! This feeling led me to ex-
plore, and perhaps like many other programmers
my attention turned to the PropertyGrid control. This
control supports the familiar properties window used
in the Visual Studio IDE to edit the properties of
objects you use in design time editors, and, although
it is not on the ToolBox by default, it is simply added
using the Add/Remove feature of the ToolBox. I

found that using it is easy and there is a lot of poten-
tial for using it – especially if you delve into creating
custom type editors – but it lacks some very basic
features that limit its use for a normal user data entry
function. The key limitations are the inability to se-
lect the properties you wish the user to see and
change, and the inability to specify the order the
properties appear. There is some control of order
– alphabetic, or by even by category, but catego-
ries must be defined usuing an attribute of the prop-
erty at compile time (not a particularly flexible ar-
rangement). Of course, I do not want to appear
overly critical of this control as it was designed to
support development IDE’s and it really does em-
ploy some excellent concepts – but it is just not that
‘bendable’ for my purpose. Still the PropertyGrid
was so close in concept that I went down that famil-
iar path and asked ‘could I fool it into doing what
I want’? I discovered I could, and as a bonus I
found the technique allowed me to do similar things
when working with ADO Dataviews and DataGrids
– the idea however is most easily demonstrated us-
ing the PropertyGrid.

3. THE SOLUTION
I was already familiar with the concepts of

reflection and the function of the TypeDescriptor
class, its GetProperties methods and in particular
how these work when a class implements an inter-
face known as ICustomTypeDescriptor. My strat-
egy was to devise a class that could wrap up an
object of any type and expose only those proper-
ties defined in some list and in the order determined
by the list. Then rather than presenting the raw ob-
ject to the control (e.g. PropertyGrid), the wrapper
class (I call this CustomView) object would be used

405

in its place. The following code snippet illustrates
this process (Figure 1).

Where pgrDemo is a PropertyGrid, and Person
is a simple class with three properties – Name, DOB
and Married. The CustomView class is the wrap-
per class that works the magic. In my demo appli-
cation the grid comes up like Figure 2.

Note that pgrDemo (the PropertyGrid) has the
ToolBarVisible property set to False and the
PropertySort set to NoSort.

The standard use of the PropertyGrid is to as-
sign the raw object to its SelectedObject property
i.e.
 pgrDemo.SelectedObject = p

rather than
 pgrDemo.SelectedObject = New
CustomView(p, props)

where p is an object of the person class used in
Figure 1. This more usual use would look like Fig-
ure 3.

The CustomView class illustrated here is a pared
down version of the one I use in production code.

This example simply uses a constructor requiring the
object to be wrapped plus a string array containing
the names of the properties in the order required for
presention. My production code allows variations
like making a property read-only on the grid when it
is read-write in the class, together with the ability to
rename properties and specify domain type values.

This basic CustomView class implements the
ICustomTypeDescriptor interface and for the most
part simply delegates to code supporting the class
of the objected being wrapped through the
PropertyDecriptors exposed by that type.

The code for CustomView is provided in Figure
4 (over page). As can be seen, CustomView is full
of simple delegation code. The points of note are
the constructor, the two forms of GetProperties and
the supporting GetPropertyList function that really
is the heart of the class. The GetPropertyList func-
tion simply substitutes the full list of properties re-
turned from the wrapped object with a filtered or-
dered list based upon the array supplied at construc-
tion time.

 Dim p As New Person

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load
 Dim props() As String = {"Name", "Married"}
 p.Name = "John Peppiatt"
 p.DOB = #1/1/1970#
 p.Married = True
 pgrDemo.SelectedObject = New CustomView(p, props)
 End Sub
 Figure 1

Figure 3Figure 2

406

4. OTHER NOTES
The demonstration grid does show help tips be-

low the properties. The text for these comes from
the Description attribute specified in the class of the
wrapped object. Figure 6 illustrates this with the
Person Class.

It is not necessary to have descriptions on prop-
erties, and the PropertyGrid will remove the pane if
the HelpVisible property is set to false. It does how-
ever indicate the potential of dynamically creating
property descriptors with dynamically created de-
scriptions at run-time!

Imports System.ComponentModel
Public Class Person
 Private _name As String
 Private _dob As Date
 Private _married As Boolean
 <Description("The full name")> Public Property Name() As String
 Get
 Return _name
 End Get
 Set(ByVal Value As String)
 _name = Value
 End Set
 End Property
 <Description("Date of birth")> Public Property DOB() As Date
 Get
 Return _dob
 End Get
 Set(ByVal Value As Date)
 _dob = Value
 End Set
 End Property
 <Description("Married or not")> Public Property Married() As

Boolean
 Get
 Return _married
 End Get
 Set(ByVal Value As Boolean)
 _married = Value
 End Set
 End Property

End Class
 Figure 5

5. CONCLUSION AND
EXTENSIONS

This technique is remarkably simple and works
with most objects. I have already extended the idea
to allow specialized validation techniques and do-
main value selection options - all worked through
properties of a derived PropertyGrid control. I have
also adapted the concept for managing collections
of objects to bind to a DataGrid but there is more
complexity implementing interfaces to support a
wrapped editable collection but it feels good when
you’ve done it. Modern programming feels like an
endless exercise of wrapping objects with other
objects but every now and then a neat idea pops up
and leverages well in many contexts.

Imports System.ComponentModel
Public Class CustomView
 Implements ICustomTypeDescriptor
 Private _Me As Object
 Private _PropertyList() As String
 <Description(“Obj is the object to manage, props is the list of properties to return”)> _
 Public Sub New(ByVal Obj As Object, ByVal props() As String)
 _Me = Obj
 _PropertyList = props.Clone
 End Sub
 <Description(“Returns the object being managed (set in the constructor).”)> _
 Public ReadOnly Property BaseObject() As Object
 Get
 Return _Me
 End Get
 End Property
 <Description(“Simply delegates to the TypeDescriptor method.”)> _
 Public Function GetAttributes() As System.ComponentModel.AttributeCollection Implements
System.ComponentModel.ICustomTypeDescriptor.GetAttributes

Figure 4 (start)

407Figure 4 (cont)

 Return TypeDescriptor.GetAttributes(_Me.GetType)
 End Function
 <Description(“Simply delegates to the TypeDescriptor method.”)> _
 Public Function GetClassName() As String Implements
System.ComponentModel.ICustomTypeDescriptor.GetClassNaMe
 Return TypeDescriptor.GetClassName(_Me.GetType)
 End Function
 <Description(“Simply delegates to the TypeDescriptor method.”)> _
 Public Function GetComponentNaMe() As String Implements
System.ComponentModel.ICustomTypeDescriptor.GetComponentNaMe
 Return TypeDescriptor.GetComponentName(_Me.GetType)
 End Function
 <Description(“Simply delegates to the TypeDescriptor method.”)> _
 Public Function GetConverter() As System.ComponentModel.TypeConverter Implements
System.ComponentModel.ICustomTypeDescriptor.GetConverter
 Return TypeDescriptor.GetConverter(_Me.GetType)
 End Function
 <Description(“Simply delegates to the TypeDescriptor method.”)> _
 Public Function GetDefaultEvent() As System.ComponentModel.EventDescriptor Implements
System.ComponentModel.ICustomTypeDescriptor.GetDefaultEvent
 Return TypeDescriptor.GetDefaultEvent(_Me.GetType)
 End Function
 <Description(“Simply delegates to the TypeDescriptor method.”)> _
 Public Function GetDefaultProperty() As System.ComponentModel.PropertyDescriptor Implements
System.ComponentModel.ICustomTypeDescriptor.GetDefaultProperty
 Return TypeDescriptor.GetDefaultProperty(_Me.GetType)
 End Function
 <Description(“Simply delegates to the TypeDescriptor method.”)> _
 Public Function GetEditor(ByVal editorBaseType As System.Type) As Object Implements
System.ComponentModel.ICustomTypeDescriptor.GetEditor
 Return TypeDescriptor.GetEditor(_Me.GetType, editorBaseType)

 End Function
 <Description(“Simply delegates to the TypeDescriptor method.”)> _
 Public Overloads Function GetEvents() As System.ComponentModel.EventDescriptorCollection Imple-
ments System.ComponentModel.ICustomTypeDescriptor.GetEvents
 Return TypeDescriptor.GetEvents(_Me.GetType)
 End Function
 <Description(“Simply delegates to the TypeDescriptor method.”)> _
 Public Overloads Function GetEvents(ByVal attributes() As System.Attribute) As
System.ComponentModel.EventDescriptorCollection Implements
System.ComponentModel.ICustomTypeDescriptor.GetEvents
 Return TypeDescriptor.GetEvents(_Me.GetType, attributes)
 End Function
 <Description(“Returns the list of properties as defined in the constructor”)> _
 Public Overloads Function GetProperties() As System.ComponentModel.PropertyDescriptorCollection
Implements System.ComponentModel.ICustomTypeDescriptor.GetProperties
 Return GetPropertyList(TypeDescriptor.GetProperties(_Me.GetType))
 End Function
 <Description(“Returns the list of properties as defined in the constructor”)> _
 Public Overloads Function GetProperties(ByVal attributes() As System.Attribute) As
System.ComponentModel.PropertyDescriptorCollection Implements
System.ComponentModel.ICustomTypeDescriptor.GetProperties
 Return GetPropertyList(TypeDescriptor.GetProperties(_Me.GetType, attributes))
 End Function

 ‘ The most interesting part of the class
 Private Function GetPropertyList(ByVal props As PropertyDescriptorCollection) As
PropertyDescriptorCollection
 Dim a As New ArrayList
 For Each s As String In _PropertyList
 ‘ ignore any nonexistent properties
 Try
 a.Add(props(s))
 Catch ex As Exception
 End Try
 Next
 Dim p(a.Count - 1) As PropertyDescriptor
 a.CopyTo(p)
 Return New PropertyDescriptorCollection(p)
 End Function
 <Description(“Returns the wrapped object.”)> _
 Public Function GetPropertyOwner(ByVal pd As System.ComponentModel.PropertyDescriptor) As
Object Implements System.ComponentModel.ICustomTypeDescriptor.GetPropertyOwner
 Return _Me
 End Function

End Class

