NEW ZEALAND INSTITUTES OF TECHNOLOGY AND POLYTECHNIC QUALIFICATIONS IN INFORMATION & COMMUNICATIONS TECHNOLOGY

PRESCRIPTION: AE610 ANALOGUE ELECTRONICS APPLIED

AIM OF MODULE: To provide students with the knowledge and skills

required for configuring and successfully operating specialised electronic analogue circuits, inherent in

a wide range of electronic equipment.

CREDITS: 7

KNOWLEDGE ASSUMED FROM: BS500 Semiconductor Theory & AE600 Analogue

Electronics

STUDENT LEARNING HOURS: 70

CONTENT REVISED: 2008

PRESCRIPTION EXPIRY DATE: Nov 2011

Level and Assessment Schedule

				Highest Skill Level				Suggested Assessment Percentage
	TOPICS			R	С	Α	Р	
1.	Amplifiers					*		35
2.	Waveform generators and switches					*		25
3.	Operational Amplifiers Integrated Circuits	&	Linear			*		25
4.	Stabilised power supplies					*		15
							:	100

LEARNING OUTCOMES

The student will:

- A 1 Explain the configuration, biasing methods and operation of multi-stage, large signal and RF bipolar and unipolar transistor amplifiers and measure and record the operating parameters of these devices
- A 2 Explain the principles and demonstrate the operation of basic sinusoidal oscillator circuits and non-sinusoidal oscillators and switches and measure and record waveforms
- A 3 Explain and compare discrete component circuits with linear integrated circuits, investigate sample product sheets, including their specifications and parameters, and investigate and record the performance of a sample device
- A 4 Explain the operation of stabilised power supplies and investigate and record the performance of a sample device

Content

1 Amplifiers

- Explaining the configuration, biasing methods and operation of multi-stage, large signal and RF bipolar and unipolar transistor amplifiers and measuring and recording the operating parameters of these devices will include:
 - The biasing conditions required for Class A, B, and C amplifiers
 - Class A, B, and C amplifier applications
 - Inter stage coupling and their application including;
 - Resistance-capacitance
 - Direct
 - Transformer
 - Tuned
 - Audio large signal amplifiers including;
 - Single ended
 - Class A push pull
 - Class B push pull
 - RF Class C amplifier
 - Operation of a bi-polar and a uni-polar transistor at high frequencies and the Miller effect
 - Multi-stage amplifier operation including;
 - Effect on gain with changes of frequency

- Measuring and recording;
 - frequency response
 - signal amplitude limits
 - the effect on the stage gain and bandwidth of disconnecting the emitter source bypass capacitor
 - input and output impedance
- Function of the individual RF Amplifier components
- Selectivity of a tuned amplifier
- Gain Bandwidth product
- Applications of buffer amplifiers
- Impedance-matching for maximising efficiency

2 Waveform Generators and switches

- Explaining the principles and demonstrating the operation of basic sinusoidal oscillator circuits and non-sinusoidal oscillators and switches and measuring and recording waveforms will include:
 - Producing oscillations using an amplifier with positive feedback
 - L-C oscillators and R-C oscillators
 - Factors that affect both the short term and long term frequency stability of oscillators
 - Methods for improving the frequency stability of oscillators eg. Piezo-electric crystal control
 - Various types of non-sinusoidal oscillators and switches such as;
 - Astable
 - Monostable
 - Bistable
 - Schmitt
 - Miller integrator
 - Application of unijunction transistors

3 Operational Amplifiers & Linear Integrated Circuits

- Explaining and comparing discrete component circuits with linear integrated circuits, investigating sample product sheets, including their specifications and parameters, and investigating and recording the performance of a sample device will involve:
 - Comparing the advantage and disadvantages of LICs over discrete component circuits
 - Accessing current manufacturer's data sheets to investigate the performance of:
 - Operational amplifiers configured as;

- Inverting
- Non-inverting
- Summing amplifiers, including AC applications and how these are effected by slew rate, bandwidth and Common Mode Rejection Ratio (CMRR)
- Large signal IC amplifiers
- RF and IF modules

4 Stabilised Power Supplies

- Explaining the operation of stabilised power supplies and investigating and recording the performance of a sample device will include:
 - Sketching the block diagram of a series and a shunt controlled power supply
 - Describing the operation of of a Zener, transistor or three terminal IC device regulated power supply, given the circuit diagram
 - Performing the calculations necessary to produce a zener controlled power supply
 - Demonstrating the operation of and measuring and recording the appropriate data for a given device

NOTES

A typical assessment strategy should include:

- Theory tests
- Assignments
- Laboratory exercises
- Group activities
- Kinaesthetic activities

Reading/Reference List:

- Basic Operational Amplifiers and Linear Integrated Circuits (2nd Edition) by Thomas L, Floyd and David M. Buchla. ISBN-13: 9780130829870 (Published by Prentice Hall, December 26, 1998)
- Web links:
 - Amplifiers http://www.electronics-tutorials.com/amplifiers/broad-band-amplifiers.htm (Accessed August 2008)
 - Waveform Generators and Switches http://www.electronics-tutorials.com/oscillators/oscillator-basics.htm & http://www.electronics-tutorials.com/oscillators/oscillator-basics.htm & http://www.electronics-tutorials.com/oscillators/oscillator-basics.htm & http://webcast.berkeley.edu/course details.php?seriesid=1906978242 (Accessed August 2008)
 - Operational Amplifiers & Linear Integrated Circuits

http://www.supplyframe.com/search_phrases/datasheet_pdf/op_amp_datasheet.s html & http://www.linearsystems.com/datasheets/SD5400.pdf (LIC example)

http://www.electronics-explained.co.uk/pdfs/analogue systems all.pdf &

http://en.wikipedia.org/wiki/Operational amplifier &

http://www.eas.asu.edu/~holbert/ece201/opamp.html

(Accessed August 2008)

• Stabilised Power Supplies http://www.elecfree.com/electronic/3-30-v25-a-stabilized-power-supply-with-lm723-and-2n3055/ (Accessed August 2008)