NEW ZEALAND INSTITUTES OF TECHNOLOGY AND POLYTECHNIC QUALIFICATIONS IN INFORMATION & COMMUNICATIONS TECHNOLOGY

PRESCRIPTION: CA700 COMPUTER ARCHITECTURE & ORGANISATION

AIM OF MODULE: To provide students with an understanding of

how units within a computer work and the

different methods of connecting them.

CREDITS: 7

KNOWLEDGE ASSUMED FROM: PR630 Programming (Systems)

OS610 Operating Systems (Internals) or

DE600 Digital Electronics and

DE610 Digital Electronics (Applied)

STUDENT LEARNING HOURS: 70

CONTENT REVISED: Pre 1996

PRESCRIPTION EXPIRY DATE: Nov 2011 (not currently offered by an ITP)

Level and Assessment Schedule

	Highest Skill Level				Suggested Assessment Percentage
TOPICS	R	С	Α	Р	
Introduction		*			10
Computer Systems Organisation		*			30
Micro programming		*			30
Conventional Machine		*			30
					100
	Introduction Computer Systems Organisation Micro programming	TOPICS R Introduction Computer Systems Organisation Micro programming	TOPICS R C Introduction Computer Systems Organisation Micro programming Level R C * * * * * Micro programming * * * * * * * * * * * * *	TOPICS R C A Introduction Computer Systems Organisation Micro programming Level * * * * * Micro programming * * * * * * * * * * * * *	TOPICS R C A P Introduction Computer Systems Organisation Micro programming Level * * * Micro programming *

The student will:

1 INTRODUCTION

- C Explain the general terms and concepts used in machine architecture and how all computers can be categorised in functional levels.
- Interpretation vs translation.
- Virtual machine concept.
- Multilevel virtual machine:
 - digital logic
 - conventional machine
 - assembly language
 - micro programming
 - operating system
 - problem oriented languages
 - hardware, software, firmware

2 COMPUTER SYSTEMS ORGANISATION

- C Explain how the individual units within a computer system work and the different ways they can be connected to form a computer system.
- Different ways of specifying instruction operands in terms of number and addressing method.
- Single processor organisation:
 - single and multiple bus structures: method and consequences
 - instruction execution: I-phase, E-phase
 - processor types: graphics, RISC technology
- Parallel instruction execution:
 - multiple CPUs
 - array processors
 - pipe-lining
- Memory organisation:
 - word lengths, different meanings and sizes
 - READ and WRITE operations on memory
 - memory management, segmentation, paging, virtual memory, cache memory, look-aside buffers their implementations with methods and reasons

- describe the Memory organisation on a range of computers eg. on PC, explain usual and maximum memory configurations, expanded and extended memory, EMS, plug-in boards and chips used on them.
- input/output
- data and address bus sizes
- functions necessary for I/O transfer
- select or address device
- transfer data
- synchronise transfer operation polling and interrupts
- interfaces serial and parallel
- DMA and character based devices
- data channels:
 - multiplexer (byte, block)
 - selector
 - block multiplexer
- describe I/O implementation on a range of computers eg. On PC, explain serial and parallel cards, disk controllers: RLL, Western Digital, SCSI, multiport terminal cards: eg. - Anvil designs for 386, micro channel
- video controllers
- distributed processing
- wide and local area networks as computer system organisation

3 MICRO PROGRAMMING

- C 3.1 Describe connection of the scratch pad to ALU, shifter, MAR, MDR and the latches that select them the data path.
- C 3.2 Micro-instructions: describe function of each line to control above components.
- C 3.3 Micro-architecture of chosen processor describe the components, their connection and function.
- C 3.4 Macro-architecture of chosen processor describe the instruction set to be micro-coded.
- C 3.5 Micro-program describe the micro-code of chosen processor.

4 CONVENTIONAL MACHINE

- C Describe the design constraints that manufacturers face in the design of an instruction set.
- Instruction length short vs long.
- Memory transfer size and rates.
- Word length.

- > Instruction format consideration:
 - op code length, expanding op codes, instruction formats
- Instruction fetch considerations instruction length field.
- Operand specification register and memory.