NEW ZEALAND INSTITUTES OF TECHNOLOGY AND POLYTECHNIC QUALIFICATIONS IN INFORMATION & COMMUNICATIONS TECHNOLOGY

PRESCRIPTION: MW600 MOBILE WIRELESS PRINCIPLES

AIM OF MODULE: Students will gain an understanding of the

principles utilised in the transmission of signals

by mobile wireless systems.

CREDITS: 14

STUDENT LEARNING HOURS: 140

CONTENT REVISED: 2008

PRESCRIPTION EXPIRY DATE: Nov 2011

Level and Assessment Schedule

	-	Highest Skill Level			Suggested Assessment Percentage
TOPICS	R	С	Α	Р	
Frequency bands & units measurement	of		*		10
Signal encoding and modulat techniques	tion		*		35
3. RF Transmission Lines			*		15
4. RF propagation		*			5
5. Aerials		*			10
6. Spread Spectrum techniques		*			15
7. Error control		*			5
8. Infrared Wireless LAN		*			5
					100

LEARNING OUTCOMES

The student will:

- A 1. Describe the Electromagnetic spectrum, the allocation of frequencies to the various services and use logarithmic units to measure system gains and losses.
- A 2. Investigate and explain encoding techniques used for analogue signals and techniques for modulating radio carrier frequencies and demonstrate the operation of simple modulation devices.
- A 3. Describe RF transmission lines, and their properties, as they apply to radio frequency transmission and measure signal levels on a RF transmission line.
- C 4. Describe the various signal propagation modes and explain how they are affected by the ionosphere and terrestrial conditions.
- C 5. Investigate and describe the construction of basic aerials and explain their radiation patterns.
- C 6. Describe and explain the concept of Spread Spectrum techniques.
- C 7. Explain error detection and correction techniques as used in mobile wireless applications.
- C 8. Describe Infrared transmission techniques and how these are applied to LAN's.

CONTENT

1. Frequency Bands & Units of Measurement

- A description of the electromagnetic spectrum and the allocation of frequencies to various services will include;
 - frequency bands and their typical application
 - services that are suited to higher frequency bands
- An explanation of the application of logarithmic units for the measurement of RF systems gains and losses will include;
 - describing the advantages of the system of logarithmic-based units
 - defining a decibel as a logarithmic power ratio and expressing the levels in decibels relative to 1 mW
 - calculating losses and gains in a system using measured power, voltage and current

2. Signal Encoding and Modulation Techniques

An explanation of signal encoding techniques will include;

a) Continuous wave modulation:

- amplitude, frequency and phase modulated carrier

- pulse and sine-wave AM waveforms
- "modulation index" as applied to a DSB AM waveform
- the production of single-sideband and double side-band AM signals
- the comparison of single and double sideband systems with specific reference to power and bandwidth
- the investigation of the operation of simple modulators, demodulators and detectors
- FM waveforms, frequency deviation and modulation index
- A comparison of AM with FM in relation to bandwidth (use of Carson's rule), power, and signal-to-noise ratio

b) **Digital Modulation**:

- transmitting an analogue signal as a series of pulses without loss of information
- the minimum sampling rate needed in order to accurately reconstruct an analogue signal
- PAM, PPM, PWM and PCM signal waveforms
- the process of analogue to PAM to PCM conversion
- the process of delta modulation
- compare delta modulation with PCM

c) **Digital Radio Modulation:**

- Digital Modulation techniques, BPSK, QPSK, QAM, π /4 DQPSK, MSK and GMSK
- choice of modulation technique in terms of quality, power, efficiency and bandwidth utilisation

3. RF Transmission Lines

- A description of RF transmission lines and their properties, as they apply to radio frequency transmission, will include;
- a uniform transmission line represented by a Pi or T-Network showing the primary constants
- the characteristic impedance (Zo) of a uniform transmission line
 - characteristic impedance expressed as the product of the open circuit and the short circuit impedances and calculated from the primary line constants
 - the secondary line coefficients
 - primary and secondary line constants as they relate to frequency
 - definition of the phase change constant (eta) of a uniform transmission line
 - definition of phase velocity (v) of propagation of a wave along a line
 - "skin effect"

- the structure of a co-axial cable and the relationship of its dimensions to Zo and $\boldsymbol{\alpha}$
- the reasons for matching a transmission line to its load
- choosing a particular transmission line for a particular application
- measurement of maximum and minimum voltage values of a RF transmission line under various operating conditions

4. RF Propagation

- A description of the various propagation modes and an explanation of how they are affected by the ionosphere and terrestrial conditions will include;
 - ground waves and sky waves
 - the effect of refraction in the ionosphere
 - skip distance, maximum useable frequency and optimum traffic frequency in non-mathematical terms
 - the phenomenon of, and reasons for, fading
 - the choice of transmission frequencies in the RF band
 - the use of the various frequency band allocations (VLF- SHF)

5. Aerials

- A description of the construction of aerials and an explanation of their radiation patterns will include;
 - concepts of radiation
 - half wave dipole (opened out quarter wave open circuit line (equivalent)) and its electric and magnetic field patterns
 - polarisation of an electromagnetic (em) wave and the pictorial representation of an em wave detaching from the local field
 - frequencies necessary for efficient radiation
 - induction and radiation fields
 - transmitting and receiving aerials operating at given frequencies
 - the Radiation Resistance of an aerial
 - measurement of a half-wave dipole polar diagram with and without the addition of a reflector and director
 - aerial gain in terms of an isotropic radiator
 - effective radiated power
 - the derivation of the Marconi unipole (from the dipole) and measurement of its polar diagram
 - the effect of aerial height above ground (graphically illustrated)
 - measurement of the forward and reverse power of an aerial feed as the aerial length is varied

6 Spread Spectrum techniques

- A description of the concept of Spread Spectrum and an explanation of the different techniques that are used will include;
 - frequency hopping and Direct Sequence Spread Spectrum
 - Code-Division Multiple Access (CDMA)
 - the use of pseudo noise sequences or orthogonal codes for generating spreading sequences

7 Error control

- An explanation of error detection and correction techniques used in mobile wireless applications will include;
 - parity check and cyclic redundancy check CRC
 - forward error correction (FEC), e.g. Hamming Code
 - automatic repeat request (ARQ)

8 Wireless LAN Infrared

- A description of Infrared transmission techniques, as applied to LAN's, will include;
 - limitations of Infrared (IR) transmissions
 - wavelengths, light sources and receivers
 - Omni-directional and Diffused systems

LEARNING RESOURCES

Required textbooks:

Wireless Communications and Networks (2nd Edition) William Stallings. ISBN-13: 978-0130422323 (Published by Prentice Hall, January 10, 2002)