NEW ZEALAND INSTITUTES OF TECHNOLOGY AND POLYTECHNIC QUALIFICATIONS IN INFORMATION & COMMUNICATIONS TECHNOLOGY

PRESCRIPTION: OS610 OPERATING SYSTEMS (INTERNALS)

AIM OF MODULE: To provide students with a thorough knowledge

of the components of a typical multiuser operating system and the interaction between

those components.

CREDITS: 7

STUDENT LEARNING HOURS: 70

CONTENT REVISED: 2008

PRESCRIPTION EXPIRY DATE: Nov 2011

Level and Assessment Schedule

	F	Highest Skill Level			Suggested Assessment Percentage
TOPICS	R	С	Α	Р	
1. Process Management		*			20
2. Storage Management			*		25
3. Processor Management		*			20
4. Auxiliary Storage Management		*			10
5. Case Study			*		25
					100

LEARNING OUTCOMES

The student will:

- С Explain the concept of a process, the interaction of these processes, and the 1 concept of deadlock
- Α 2 Describe storage management in single and multi-programming environments, explain the management of real and virtual storage and monitor programme behaviour
- С 3 Explain how processes are scheduled in a multitasking environment
- С Explain the main techniques used in disk scheduling and the management of 4 auxiliary storage for file and database applications
- Α 5 Demonstrate, using a case study, how a current multitasking operating system performs its operations and manages its processes

Content

1 **Process Management**

- Explaining the concept of a process, the interaction of these processes, and the concept of deadlock will include:
 - Process;
 - **States**
 - Control blocks
 - Operations
 - Interrupt processing
 - Context switching
 - Interactions;
 - Parallel processing
 - Mutual exclusion
 - Deadlock;
 - Coffman conditions
 - Mutual exclusion
 - Hold and wait
 - No preemption
 - Circular wait
 - Avoidance (Banker's algorithm)
 - Prevention (Four conditions)
 - Detection and recovery
 - Anticipation

- Livelock
- Indefinite postponement examples

2 Storage Management

- Describing storage management in single and multi-programming environments, explaining the management of real and virtual storage and monitoring programme behaviour will involve:
 - Storage Organisation;
 - Contiguous and non-contiguous
 - Fixed and variable partitions
 - Storage management strategies;
 - Fetch
 - Placement and replacement
 - Single user contiguous allocation
 - Single stream batch manager
 - Multi programming;
 - Fixed and variable partition
 - Fragmentation
 - Swapping
 - Caching
 - Virtual Storage Organisation;
 - Paging and segmentation
 - Address translation
 - Virtual Storage Management
 - Fetch
 - Pacement and replacement
 - · Page replacement policies;
 - FIFO (first in first out)
 - LRU (least recently used)
 - LFU (least frequently used)
 - NUR (not used recently)
 - Locality
 - Thrashing
 - Fetch policies (demand and anticipatory)
 - Page size and page release
 - Program behaviour under paging (including blocking and swapping)

 Using an available monitoring package to document program behaviour under a variety of machine conditions

3 Processor Management

- > Explaining how processes are scheduled in a multitasking environment will include:
 - Scheduling;
 - Strategies
 - Cooperative multitasking
 - Context switch
 - Multithreading
 - Algorithms;
 - Cooperative scheduling;
 - Round robin
 - Fixed priority pre-emptive
 - Pre-emptive scheduling;
 - Pre-emptive time slicing
 - Static time scheduling
 - Real Time Operating Systems (RTOS)
 - Interval timing
 - Priorities;
 - None, static and dynamic
 - Operator control
 - Swapping and its functions

4 Auxiliary Storage Management

- Explaining the main techniques used in disk scheduling and the management of auxiliary storage for file and database applications will include:
 - Filing systems;
 - Account/directory structures
 - Block allocation
 - Disk scheduling
 - Data base systems
 - Security;
 - User logon and password protection
 - Account/directory/file access protection

- Encryption
- Memory protection

5 Case Study

- Demonstrating, using a case study, how a current multitasking operating system performs its operations and manages its processes will include:
 - Management of;
 - Process and processor
 - Storage and auxiliary storage

Resources

- Operating System http://en.wikipedia.org/wiki/Operating_system (Accessed August 2008)
- **Primary Storage** http://en.wikipedia.org/wiki/Physical_memory#Primary_storage (Accessed August 2008)