NEW ZEALAND INSTITUTES OF TECHNOLOGY AND POLYTECHNIC QUALIFICATIONS IN INFORMATION & COMMUNICATIONS TECHNOLOGY

PRESCRIPTION: PR530 PROGRAMMING (SYSTEMS)

AIM OF MODULE: To provide students with a basic introduction to

the way in which processors work and can be

programmed.

CREDITS: 7

STUDENT LEARNING HOURS: 70

CONTENT REVISED: 1996

PRESCRIPTION EXPIRY DATE: Nov 2011

Level and Assessment Schedule

		F	Highest Skill Level			Suggested Assessment Percentage
	TOPICS	R	С	Α	Р	
1.	Fetch/Execute Cycle		*			20
2.	Program Creation			*		10
3.	Instruction Sets		*			15
4.	Simple Program Loops			*		15
5.	Memory	*				25
6.	Understanding Bus Mechanisms	*				15
						100

The student will:

1 FETCH/EXECUTE CYCLE

- The student must understand the function of the main components of the CPU.
- R 1.1 Define the properties and uses of a register.
- C 1.2 Explain the two parts of an instruction:
 - the operator (op code)
 - the operand (data)
- R 1.3 Use a diagram to show the relationship between the following CPU units:
 - accumulator
 - arithmetic and logic unit
 - program counter
 - instruction register
 - stack pointer
 - control and timing
- C 1.4 Explain the purpose of each unit in 1.3 above.
- R 1.5 Describe a basic Fetch/Execute Cycle.
- C 1.6 Demonstrate a fetch/execute cycle with a "real" instruction.

2 PROGRAM CREATION

A 2.1 Define the algorithm to add two bytes from memory and put the result into memory. Draw the logic flow diagram. Code in machine language instructions. Debug.

3 INSTRUCTION SETS

- C 3.1 State (and be able to recognise) the following instruction groups:
 - arithmetic and logic
 - data transfer
 - test and branch
- R 3.2 Describe the following types of addressing modes:
 - direct
 - indirect
 - immediate
 - offset

4 SIMPLE PROGRAM LOOPS

- The student is required to write an assembler language program containing loops.
- R 4.1 Explain the concept of a loop as being a section of code which is obeyed repetitively.
- C 4.2 Show how the number of times a loop is executed is controlled by a parameter, including the way such a parameter is tested on each pass.
- C 4.3 Explain how a JUMP or BRANCH instruction is used to position the Program Counter at the beginning of the loop.
- A 4.4 Write an algorithm to add five numbers (stored in sequential locations) together and put the sum in the sixth location. Design and write the program.

5 MEMORY

- > The student should understand the relationship between the CPU and memory.
- R 5.1 Explain the concept of memory as a series of uniquely addressable locations.
- R 5.2 State the typical way in which the size of memory locations can be described (bytes, words).
- R 5.3 Explain the relationship between bytes, words and the ALU.
- R 5.4 Explain the operation of a simple memory chip.
- R 5.5 Describe the process of address decoding.
- R 5.6 Explain the relationship between the number of address lines and the available memory locations that can be addressed).
- R 5.7 Describe the possible contents of a memory location (data, instruction, garbage).
- R 5.8 Explain the functions of the following:
 - chip enable
 - read signals
 - write signals
 - data buses (lines)
 - address buses (lines)

6 UNDERSTANDING BUS MECHANISMS

- R 6.1 Describe the signals on a
 - data bus
 - address bus
 - control bus
- R 6.2 Explain how a bus is used for one piece of information at a time.
- R 6.3 Explain how only one sending and one receiving device are active at any one time on a bus.
- R 6.4 Describe the tri-state device and how it makes bus systems viable.
- R 6.5 Describe how a device can be read from or written to (sequence of operations).